In the current study, haemoglobin analytes dissolved in a special buffer (KH2PO4(1M), K2HPO4(1M)) with pH of 7.4 were used to record absorption spectra measurements with a range of concentrations from (10-8 to 10-9) M and an absorption peak of 440nm using Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) which is considered a simple, low cost, and robust setup. The principle work of this technique depends on the multiple reflections between the light source, which is represented by the Light Emitting Diode 3 W, and the detector, which is represented by the Avantes spectrophotomer. The optical cavity includes two high reflectivity ≥99% dielectric mirrors (diameter 25mm, radius of curvature 100mm) and a quartz cuvette 1 cm to put the samples in the system. This system is also composed of some lenses, aires, and optical fibres to transfer the light from the light source to the optical cavity and after that to the detector. This setup is considered ~3-fold more sensitive when it is compared with another spectroscopic technique as it reduces the effect of noise due to fluctuations in the light intensity. Additionally, the theoretical study estimated the absorption spectra of the haemoglobin concentrations using Table Curve 2D software. The absorption spectra curve was fitted using a suitable curve-fitting equation for these spectra, which was represented by the Gaussian function. The similarity of the theoretical and practical spectra demonstrated that the estimated models can replace the experimental measurements, which leads to a reduction in the cost and time required for the absorption spectroscopy measurements
An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
The present study tackles the scientific model and the mechanisms of operating in the formation of the image of the artistic work to create a scene that cares for the aesthetic decoration through raw and techniques and employing them to express the aesthetic values that care for what is not familiar and deviation from the familiar in the visual exhibition and the care for the employment of the technical abilities, lighting, and sound as well as the employment of multiple materials. The research presents the objectives of his study in the exhibition hall of Natural History Museum (University of Baghdad) to create an aesthetic and expressive state at the same time. Then, in the theoretical framework the researcher traces the experiments of
... Show MoreThis work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C. As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power
... Show MoreThis research mainly aims to analyze local development strategy in Baghdad Governance, build the Strategic Model based on the study area's spatial interaction, and achieve the Trinity of Excellence based on the global model of excellence.
This research applied SWOT strategic analysis for the strengths and weaknesses of the internal environment and opportunities and threats of the external environment for the provincial council. In conclusion, the research specifies appropriate alternatives and choosing the best in line with the reality of the Baghdad Provincial Council. Also, the strategic goals in the national plan and the spatial interaction of the development goals,
... Show MoreHeat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he
... Show MoreFree radical formation in heme proteins is recognized as a factor in mediating the toxicity of many chemicals. The present study was designed to evaluate the dose-response relationship of the free radical scavenging properties of pentoxifylline in nitrite-induced Hb oxidation. Different concentrations of pentoxifylline were added at different time intervals of Hb oxidation in erythrocytes lysate, and formation of methemoglobin (MetHb) was monitored spectrophotometrically. The results showed that in this model, pentoxifylline successfully attenuates Hb oxidation after challenge with sodium nitrite; this protective effect was found to be not related to the catalytic stage of Hb oxidation, th
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
In this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted in the theoretical cross section and compared with the experimental data for nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi
... Show MoreCams are considered as one of the most important mechanical components that depends the contact action to do its job and suffer a lot of with drawbacks to be predicted and overcame in the design process. this work aims to investigate the induced cam contact and the maximum shear stress energy or (von misses) stresses during the course of action analytically using Hertz contact stress equation and the principal stress formulations to find the maximum stress value and its position beneath the contacting surfaces. The experimental investigation adopted two dimensions photoelastic technique to analyze cam stresses under a plane polarized light. The problem has been numerically simulated using Ansys software version 15 as FE
... Show More