Toxic dyes are commonly discharged into waste waters and dyes are extensively used in the textile industry so it is necessary to find out efficient and eco-friendly method for treating waste waters resulting from industrial effluences. To achieve this aim the fungus Trichoderma sp. is employed into two lines: first line was self – immobilized fungal pellets in (Czapek – Dox medium) to adsorbs two dyes crystal violet, congo red by concentrations 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 mg/L to both dyes, PH 2, room temperature with shaker in ( hrs.2,hrs.4,hrs.24) , by Uv- Visible spectrum . the removal efficiency of 0.05 mg/L crystal violet by Trichoderma sp was 96%. but there was no removal by congo red. The second line was immobilizing fungal mycelium to Graphain oxide free – standing aerogel to increase efficiency of adsorption. The decolorization of toxic dyes solution was detected by the change in the adsorption Uv- Visible spectrum and scanning microscopy analysis which revealed that there was dye adsorption on fungal mycelium surface. After treatment of crystal violet with 20 mg Graphain oxide -fungi aerogel in the condition PH 2, room temperature with shaker in time (hrs.2 ,hrs.4 , hrs.24 ) removal percentage to crystal violet was increasing with to raise concentrations the dye crystal violet until reaching the maximum removal percentage 97% in hrs.4 in 0.05mg/L concentrate , and it increased the efficiency of other concentrations . In contrast, according to congo red there was no color removal in any concentration within treatment time since congo red surface carries both negative and positive charges and causes electrostatic attraction, therefor, the adsorption reduced or does not occur.Trichoderma sp. is considered a selective removal to basic dyes and could be employed to remove dyes from industrial effluents.
Biosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied
To determine the expression of key epithelial–mesenchymal transition (EMT) markers in gingival tissue samples collected from patients with periodontitis.
Epithelial–mesenchymal transition is a process responsible for shifting epithelial‐phenotype to mesenchymal‐phenotype leading to loss of epithelial‐barrier function. Thus, EMT could be involved as a pathogenic mechanism in periodontitis as both conditions share common promoters and signalling pathways.
Gingival tissue samples were collected fro
This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreThis study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show More