The fabrication of Solid and Hollow silver nanoparticles (Ag NPs) has been achieved and their characterization was performed using transmission electron microscopy (TEM), zeta potential, UV–VIS spectroscopy, and X-ray diffraction (XRD). A TEM image revealed a quasispherical form for both Solid and Hollow Ag NPs. The measurement of surface charge revealed that although Hollow Ag NPs have a zeta potential of -43 mV, Solid Ag NPs have a zeta potential of -33 mV. According to UV-VIS spectroscopy measurement Solid and Hollow Ag NPs both showed absorption peaks at wavelengths of 436 nm and 412 nm, respectively. XRD pattern demonstrates that the samples' crystal structure is cubic, similar to that of the bulk materials, with average particle sizes of 28 nm and 27 nm for Solid and Hollow Ag NPs, respectively. The antimicrobial activity of synthesized Ag NPs was tested on some pathogenic bacterial strains which were isolated from urinary tract infection (UTI) and burn infection. The experiment results showed positive bactericidal activity against isolated bacteria with Solid Ag NPs which were most effective against both G-ve and G+ve bacteria. In addition, solid nanoparticles showed time and concentration dependent antibacterial activity.
The aerodynamic and elastic forces may cause an oscillation of the structure such as the high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight and failure may occur at a speed called flutter speed. In this work, analytical and numerical investigations of flutter limits of thin plates have been carried out. The flutter speed of rectangular plates were obtained and compared with some published results. Different design parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. It was found that the structural mode shape plays an important role in the determination of the flutter speed and the coupling between the bending and torsional mode is the main
... Show MoreInternet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-
... Show MoreHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth. In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreThis study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
Hedging is a linguistic phenomenon used to convey interpersonal messages in spoken interaction. It is a communicative strategy which enables speakers to soften the force of utterances or moderate the assertive force of utterances. It is resulted from different features such as uncertainty, doubt, tentativeness, ambiguity, neutrality, mitigation, and subjectivity. Hedging is used widely in TV debates to make utterances more acceptable to the interlocutors. Hedges are expressions used to communicate the speaker's weak commitment to information conveyed. The utterances in debates are often hedged because in an unhedged form might sound threatening to the addressees, and, therefore, be likely to be rejected.
&
... Show MoreThis research included the preparation of Ni, Pd oxide and Pt metal nanoparticles derived from Schiff base (E)-2-(((2,5-dichlorophenyl)imino)methyl)-4-methyl phenol octahedral from Ni(II) complex and square planar from Pd(II) and Pt(II) complexes using pulsed laser ablation immersed in deionized water. The optical properties of the prepared NiO, PdO, and Pt nanoparticles were investigated using UV-Visible spectra and FTIR spectrophotometer. The shape and structure were analyzed by Transmission Electron Microscope (TEM) and the X-ray Diffraction Instrument XRD. By using the Scherrer equation, the results showed Ni, Pd, and Pt nanos with average particle sizes of 28.53nm, 20.47nm, and 22.30nm. The biological acti
... Show More