In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process utilizing the base set of 3–21G geometrical structures. The molecular geometry and contours for compounds with charge-transfer complexes have been evaluated during the process of geometrical optimization. By investigating the interactions between donor and acceptor, we have also been contrasting the energies (HOMO
energies) of the chemicals in charge-transfer complexes. For molecules containing charge-transfer complexes, the lower case, electronegativity, ionization potential, electron affinity, and electrophilicity have all been calculated and studied.
All the prepared metal complexes of Pt (IV), Au(III), Rh (III), Co (II) and V(IV) with new ligand sodium [5-(p-nitro phenyl)-/4-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide] (TRZ.DTC) have been synthesized and characterized in solid state by using flame atomic absorption, elemental analysis C.H.N.S, FT-IR ,UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of the complexes formed in ethanolic solution has been studied following the molar ratio method also was studied stability constant and found to be stable in molar ratio1:1 of VL (IV) and CoL(II) while Pt(IV), Au(III) and Rh(III) complexes stable in molar ratio 1:2 as well as the molar absorptivity for these complexes were calculated. From the prev
... Show MoreThis work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-chem
... Show MoreThis work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-c
... Show MoreThe target of this study was to synthesize several new Ciprofloxacin drug analogs by providing a nucleophilic substitution procedure that provides new functionality at the carboxylic group location. The analogs were synthesized, designed, and characterized by 1HNMR, and FTIR. The synthetic path began from the reaction of ciprofloxacin drug with morpholine to give compound[B], ciprofloxacin derivative was linked with a variety of primary and secondary amines to give compounds[B1-B9]. The above-mentioned prepared compounds [B3 and B5] were applied to liver enzymes, and the increase in the activity of these enzymes was observed. In addition, a theoretical study was conducted to study the energies and properties of the prepared co
... Show MoreThe complexes of para-chloranil as electron acceptor and the anions of amide, azide and cyanide as electron donors in aqueous ethanol as a solvent, were studied spectrophotometrically . The reactions lead to the formation of charge transfer complexes. The CT complexes were stable in excess acceptor concentration, while they were underwent another transformations in excess donors concentrations. Stoichiometries were determined, the molecular ratio was determined by continuous variation method (Job method) and is was 1:1 (donor: acceptor). The maximum wavelength (λ max.), the energy (hυCT), ionization potential (Ip) and activation energy (w ) of excited state f
... Show MoreNew Schiff bases derived from D-galactose were synthesized by condensation of aldehyde (1,2:3,4-Di-O-isopropylidene-6-carboxaldehyde-α-D-galactopyranose) with different aromatic amines such as (4-bromo, 3-hydroxy, 4-iodo, 4-methoxy) aniline in dry benzene using glacial acetic acid as a catalyst. These compounds were converted to oxazepine derivatives by addition reaction with maleic anhydride in dry benzene as a solvent. The structures of the synthesized compounds have been characterized by elemental analysis, FTIR spectra, some of them by using 1HNMR spectra and measurement of its physical properties.
New derivatives of the anti-inflammatory, leprostatic drug dapsone 4 are synthesized, characterized and biologically screened by the treating the drug dapsone with chloroacetyl chloride in the presence of base. Both amino groups are acylated to give compound 6. The symmetrical acylated product then treated with Phenol, N-Acetyl-p-aminophenol, p-Chlorophenol, m-Chlorophenol, o-Hydroxybezoic acid and m-Hydroxybezoic acid to give compounds 8(a-f). The antimicrobial activity was tested for the synthesized compounds; activates were good compared to the parent drug. All the new compounds have scanned for their biological activities toward gram ‒ve and gram +ve (M. tuberculosis, S. pneumoniae, E. coli and P. mirabilis) bacteria, the synthesized
... Show MoreThe new schiff bases derived from D-erythroascorbic acid contaning heterocyclic unit were synthesized by condensation of D-erythroascorbic acid with aromatic amine (containing 1,3,4oxadiazole or 1,3,4-thiadiazole unit) in dry benzene using glacial acetic acid as a catalyst. Derythroascorbic acid [IV] was synthesized by four steps (Scheme 1), while the primary aromatic amine which is containing 1,3,4-oxadiazole [VII] or 1,3,4-thiadiazole [VIII] synthesized by the reaction of 4methoxy benzoyle hydrazine [VI] with 4-amino benzoic acid or by the reaction tuloic acid with thiosemicarbazide, respectively in the presence of POCl3. The new 1,3-oxazepine derivatives were obtained by addition reaction of Schiff bases with d
... Show MoreNew Schiff base, namely [2-(carboxy methylene-amino)-phenyl imino] acetic acid (L) and its some metal complexes [LCo.2H2O], [LNi.2H2O], [LCu].3H2O, [LCd.2H2O], [LHg.2H2O] and [LPb.2H2O], were reported and characterized by elemental analysis, metal content, spectroscopic methods, magnetic moments and conductivity measurements, it is found that the geometrical structures of these complexes are octahedral [Co(II), Ni(II), Cd(II), Hg(II), Pb(II) and square planar Cu(II).The complexes have been found to posses 1:1 (M:L) stoichiometry