The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.
Polyaromatic hydrocarbons (PAHs) are a group of aromatic compounds that contain at least two rings. These compounds are found naturally in petroleum products and are considered the most prevalent pollutants in the environment. The lack of microorganism capable of degrading some PAHs led to their accumulation in the environment which usually causes major health problems as many of these compounds are known carcinogens. Xanthene is one of the small PAHs which has three rings. Many xanthene derivatives are useful dyes that are used for dyeing wood and cosmetic articles. However, several studies have illustrated that these compounds have toxic and carcinogenic effects. The first step of the bacterial degradation of xanthene is conducted by d
... Show MoreWe introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
This paper consist some new generalizations of some definitions such: j-ω-closure converge to a point, j-ω-closure directed toward a set, almost j-ω-converges to a set, almost j-ω-cluster point, a set j-ω-H-closed relative, j-ω-closure continuous mappings, j-ω-weakly continuous mappings, j-ω-compact mappings, j-ω-rigid a set, almost j-ω-closed mappings and j-ω-perfect mappings. Also, we prove several results concerning it, where j Î{q, δ,a, pre, b, b}.
Abstract. In this work, some new concepts were introduced and the relationship between them was studied. These concepts are filter directed-toward, nano-closure-directed-toward and nano-closure-converge to point, and some theories and results about these concepts were presented. A definition almost-nano-converges for set, almost-nano-cluster-point, and definition of quasi-nano-Hausdorff-closed and was also called nano-Hausdorff-closed relative, were also presented several theories related to these definitions were presented and the relationship between them was studied . We also provided other generalizations, including nano closure continuous mappings and it was also called as nano-weaklycontinuous- mappings, as well as providing a definit
... Show MoreSemiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use
... Show MoreIn previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show MoreThe purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show More