This study has been done on plant [Adhatoda vasicia , Acanthaceae family],which has been collected from gardens of university of Baghdad The leaves of plant were extracted by methanol alcohol obtain the crude extraction good ratio(30%).Eighty swabs or samples were collected from several wounds patients of hospitals in Baghdad city.These swabs were cultured on blood and MacConkey ager to isolate bacteria and identified by appearance and bio chemical tests.The results showed that(60)somples were positive(75%)for tests bacteria white the other(20)swabs were negative(25%).The bacteria were identified as Pseudomonas aeruginosa ,Staphylococcus awreus , Esherichia coli,Proteus spp and Klebsiella spp; and their number percentage were(32)isolates(49.2 %),(7)isolates(10.7%),(5)isolates(7.6%),(1)isolate(1.5%)and(20)isolates(30.7%)respectivity.Crude extract teated by sensitivity test against the bacteria with concentration (2,4,6,8,10,12mg/ml).The results showed that the inhibition zone increased with increasing ils concentration The best concentration that inhited most of the bacteria is(6 mg/ml) of the crud extract that was isolated from wounds .
Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreThe automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show MoreWater balance approaches are strategies for resolving key theoretical and practical hydrological issues. The major goals of this study are to examine climatic elements and conditions to calculate groundwater recharge using the water balance approach. The study area is located in Mandaly city, Diyala Governorate, eastern Iraq. The metrological data was gathered between 1994 and 2020 to evaluate the study area's climate. The annual rainfall rate has been 248.61 mm, with a relative humidity of 43.89%, a temperature of 24.41 oC, a wind speed of 1.99 m/sec, sunshine of 8.32 hours per day, and evaporation of (268.09 mm). The total amount of corrected evapotranspiration was 1010.09 mm, with a peak value of 225.29 mm in Jul
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show More