Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy(EDX), the physico-chemical characterization of Y2O3NPs was examined. The primary characteristic peak of YOY at 565 cm-1, which indicates the synthesis of nanoparticles, is seen in the FT-IR spectra. The XRD pattern showed that a single phase cubic structure of YONPs with an Ia-3 space group had formed. SEM was used to examine the surface morphology. The composition of Yttrium and oxygen in Y2O3NPs was determined to be 78.74% and 21.26%, respectively, according to the EDX results. The anticorrosive behavior was tested by polarization curve in 18.204% CaCl2 solution at five temperatures in the range 293- 313 K. Various concentrations 0.15 0.26 and 0.37 of N Y2O3NPs coating on the carbon steel surface were applied using the electrophoresis deposition method. The obtained results indicated that Y2O3NPs formed a protective film acts as a physical barrier for the protection of steel alloy. Additionally, corrosion protection efficiency values of 0.26 N Y2O3NPs coating were superior to that of 0.15 and 0.37 N Y2O3NPs coating, respectively.
|
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
The aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and experimentally. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Experimentally, a model was manufactured from wood to carry out the tests. The primary objective of the experimental work was the measurements of the wake dimensions and orientation, velocity defect along the wake and the wake thickness. A blower type low speed (open jet) wind tunnel was used in the experimental work. The mean velocity at the test section was (9.3 m/s) and the Reynolds number based on the mean aerodynamic chord and the mean velocity was (0.46x105). The measurements sho
... Show More
In this work, the geomagnetic storms that occurred during solar cycles 23 and 24 were classified based on the value of the Disturbance Storm Time index (Dst), which was considered an indicator of the strength of geomagnetic conditions. The special criterion of Dst >-50 nT was adopted in the classification process of the geomagnetic storms based on the minimum daily value of the Dst-index. The number of geomagnetic storms that occurred during the study period was counted according to the adopted criteria, including moderate storms with (Dst >-50 nT), strong storms with (Dst >-100 nT), severe storms with (Dst >-200 nT), and great storms with (Dst >-350 nT). The statistica
Experimental tests were conducted to investigate the thermal performance (cooling effect) of water mist system consisting of 5μm volume median diameter droplets in reducing the heat gain entering a room through the roof and the west wall by reducing the outside surface temperature due to the evaporative cooling effect during the hot dry summer of Baghdad/Iraq. The test period
was Fifty one days during the months May, June, and July 2012. The single test day consists of 16 test hours starting from 8:00 am to 12:00 pm. The results showed a reduction range of 1.71 to 15.5℃ of the roof outside surface temperature and 21.3 to 76.6% reduction in the daily heat flux entering the room through the roof compared with the case of not using w
Abstract
The objective of this study was to investigate the phytochemical constituents of two different parts of Vigna radiata (seeds and sprouts), and identify their anti angiogenic activity .the goal was achieved by Preliminary qualitative phytochemical screening for crude ethanolic extract of two parts of plant
; rat aorta anti-angiogenesis assay had been conducted for both extracts . isolation , separation and purification of some phytochemical constituents that belong to important groups (flavonoids) from n-butanol fraction extract of Vigna radiata plant had been done in pure form by using preparative thin layer chromatography ( PTLC ) and then
... Show MoreSingle Point Incremental Forming (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The sheet part is locally deformed through horizontal slices. The moving locus of forming tool (called as toolpath) in these slices constructed to the finished part was performed by the CNC technology. The toolpath was created directly from CAD model of final product. The forming tool is a Ball-end forming tool, which was moved along the toolpath while the edges of sheet material were clamped rigidly on fixture.
This paper presented an investigation study of thinning distribution of a conical shapes carried out by incremental forming and the validation of finite element method to evaluate the limits of the p
... Show MoreThis study was conducted to investigate phytoplasma causing a virescence disease on Arabic jasmine Jasminum sambac based on microscopy and molecular approaches. Samples were collected from symptomatic Arabic jasmine plants grown in nurseries in Baghdad-Iraq. Specimens from infected plants were prepared and Dienes stained for light microscopy examination. Phytoplasma were detected in infected plants by polymerase chain reaction (PCR) using P1/P7 and SecAfor1/SecArev3 Candidatus Phytoplasma specific primer sets. Light microscopy test showed symptomatic Arabic jasmine plants were phytoplasms infected when phloem tissues were stained with a dark blue color. PCR test confirmed the symptomatic plants were phytoplasms infected when SecAfor1/Sec
... Show More