Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy(EDX), the physico-chemical characterization of Y2O3NPs was examined. The primary characteristic peak of YOY at 565 cm-1, which indicates the synthesis of nanoparticles, is seen in the FT-IR spectra. The XRD pattern showed that a single phase cubic structure of YONPs with an Ia-3 space group had formed. SEM was used to examine the surface morphology. The composition of Yttrium and oxygen in Y2O3NPs was determined to be 78.74% and 21.26%, respectively, according to the EDX results. The anticorrosive behavior was tested by polarization curve in 18.204% CaCl2 solution at five temperatures in the range 293- 313 K. Various concentrations 0.15 0.26 and 0.37 of N Y2O3NPs coating on the carbon steel surface were applied using the electrophoresis deposition method. The obtained results indicated that Y2O3NPs formed a protective film acts as a physical barrier for the protection of steel alloy. Additionally, corrosion protection efficiency values of 0.26 N Y2O3NPs coating were superior to that of 0.15 and 0.37 N Y2O3NPs coating, respectively.
: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show MoreMan has a great role in the development of society in all fields, and therefore the human thought played a great role in its continuous pursuit and insight into the social classes that differ in their privileges, which makes the members of society not reconcile because of that disparity that is not based on human principles, so one class exploits another, and this is what stopped me Rather, it prompted me to choose the topic (class and its impact on society) in order to show the impact of classes on each other negatively and positively, so I work to avoid the first with the recommendations I put forward and offer guidance, and strengthen the second, and after this topic of necessity in a place because of the imbalance and promise of appr
... Show MoreFrom the responses of Imam Abi Zakaria al-Nawawi 676 AH on the grammarians in his commentary on Sahel Muslim
By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreAlthough allowable amounts of glycol contamination in diesel engine oil, no research has been conducted on how these levels and varying loads affect engine performance. The research used a four-stroke diesel engine to investigate the effect of different glycol contamination levels (0, 120, and 220 ppm) under two engine loads (4.5 and 9 kW). Brake specific fuel consumption, brake thermal efficiency, friction power, and exhaust gas temperature were measured to determine the engine performance. The experiment used the factorial arrangement in a completely randomized design (CRD) with three replicates. Increasing the contamination levels from 0 to 120 and then to 220 ppm under constant engine load significantly increased brake specific fuel con
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Heavy metal consider as major environmental pollutants. Many of industrial wastewater effluents contain a wide range of these heavy metals. The adsorption of Cd2+ and Pb2+ metal ions from aqueous solution by activated carbon was studied. The results showed that maximum adsorption capacity occurred at 486.9×10-3 mg/kg for Pb2+ ion and 548.8×10-3 mg/kg for Cd2+ ion. The adsorption in a mixture of the metal ions had a balancing effect on the adsorption capacity of the activated carbon. The adsorption capacity of each metal ion was affected by the presence of other metal ions rather than its presence individually. The study showed the presence of other heavy metals attribute to the reduction in the activated carbon capacity, and the adsorp
... Show MoreThe aim of this study was to develop a sensor based on a carbon paste electrodes (CPEs) modified with used MIP for determination of organophosphorus pesticides (OPPs). The modified electrode exhibited a significantly increased sensitivity and selectivity of (OPPs). The MIP was prepared by thermo-polymerization method using N,N-diethylaminoethymethacrylate (NNDAA) as functional monomer, N,N-1,4-phenylenediacrylamide (NNPDA) as cross-linker, the acetonitrile used as solvent and (Opps) as the template molecule. The three OPPs (diazinon, quinalphos and chlorpyrifos) were chosen as the templates, which have been selected as base analytes which used widely in agriculture sector. The extraction efficiency of the imprinted polymers has been evaluat
... Show MoreThe objective of this research was to estimate the dose distribution delivered by radioactive gold nanoparticles (198 AuNPs or 199 AuNPs) to the tumor inside the human prostate as well as to normal tissues surrounding the tumor using the Monte-Carlo N-Particle code (MCNP-6.1. 1 code). Background Radioactive gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated to treat prostate cancer in animals. In order to use them as a new therapeutic modality to treat human prostate cancer, accurate radiation dosimetry simulations are required to estimate the energy deposition in the tumor and surrounding tissue and to establish the course of therapy for the patient. Materials and methods A simple geometrical
... Show MoreThis study aimed to explore and separate the phytochemicals of the whole plant Conyza canadensis, a naturally growing plant in Iraq, since no phytochemical research was done previously in Iraq. The whole plant of C. canadensis was defatted by maceration in hexane for 24 hours. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous ethanol 85% as a solvent extraction for 9 hours, and fractionated by petroleum ether, chloroform, ethyl acetate, and n-butanol. The petroleum ether, chloroform, and ethyl acetate fractions were analyzed by high-performance liquid chromatography (HPLC) for their steroids, alkaloids, and polyphenolic (phenolic acids and flavonoids) contents. One alkaloid was isolated from chloroform fractio
... Show More