Diabetic kidney disease is an illness of the glomerulus that interferes with the glomerular filtration barrier (GFB), which is worked to enable kidney to selective purification of water and solutes in addition to limiting the movement of large macromolecules such as albumin. In the glomerular endothelium, mesangial cells, foot cells, and the brush border of the proximal tubules, ACE-2 is expressed and that the kidneys represent the highest-expressing region of this enzyme. Thus, the current study aimed to evaluate ACE-2 level in this case compared to healthy condition. The study Conducted with 120 male and female ranging in age (30-65) years old. Ninety patients with type 2 diabetes subdivided into three groups on the basis of ACR criteria including normoalbuminuria, microalbuminuria, macroalbuminuria (30 patients for each group) and 30 healthy people served as the control group, all visited Baghdad Teaching Hospital / Medical City and Al-Yarmouk Teaching Hospital, at the period between December 2021 and May 2022. ACE-2 levels were determined using the ELISA technique. Urea results showed significant differences between diabetic nephropathy in patient and control group in female cases but no significant differences in male patients with diabetic nephropathy and control group. Similar results were obtained in K ion. Also the results revealed significant differences in Na ion, ACR, eGFR, Urea, FBS, creatinine between diabetic nephropathy groups and healthy group.ACE-2 represents a good marker for early prediction in diabetic nephropathy case. ROC data analysis support the importance of ACE-2 in diagnosis of the studied disease case.
In this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show MoreThroughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
In this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreRate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show More
The complete genome sequence of bacteriophage VPUSM 8 against O1 El Tor Inaba
The purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod
An experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show MoreThe present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si