Preferred Language
Articles
/
bsj-762
Production of fibrinolytic protease from various fungal isolates and species 2.Determination of optimum conditions for enzyme production from Pleurotus ostreatus
...Show More Authors

The optimum conditions for production of fibrinolytic protease from an edible mushroom Pleurotus ostreatus grown on the solid medium , Sus medium, composed of Sus wastes (produced from extracted medicinal plant Glycyrrhiza glabra) were determined. Addition of 5% of Soya bean seeds meal in Sus medium recorded a maximum fibrinolytic protease activity resulting in 7.7 units / ml. The optimum moisture content of Sus medium supplemented with 5% Soya bean seeds meal was 60% resulting in 7.2 units / ml.Pleurotus ostreatus produced a maximum fibrinolytic protease activity when the spawn rate,pH of medium and incubation temperature were 2,6 and 30°C, respectively. The maximum fibrinolytic protease activity was 7.6 units / ml when incubation period of Pleurotus ostreatus at the end of 3rd week (vegetative or mycelium stage), then lowered to 6.2 and 4.4 units/ml in the end of 4th week (reproduction or fruit bodies stage) and 5th week (after harvesting of fruit bodies), respectively. Although the minimum fibrinolytic protease activity was recorded in the end of 4th and 5th weeks, production of fibrinolytic protease regard to a byproduct after harvesting of fruit bodies.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Ieee Transactions On Circuits And Systems Ii: Express Briefs
Adaptive Multibit Crosstalk-Aware Error Control Coding Scheme for On-Chip Communication
...Show More Authors

The presence of different noise sources and continuous increase in crosstalk in the deep submicrometer technology raised concerns for on-chip communication reliability, leading to the incorporation of crosstalk avoidance techniques in error control coding schemes. This brief proposes joint crosstalk avoidance with adaptive error control scheme to reduce the power consumption by providing appropriate communication resiliency based on runtime noise level. By switching between shielding and duplication as the crosstalk avoidance technique and between hybrid automatic repeat request and forward error correction as the error control policies, three modes of error resiliencies are provided. The results show that, in reduced mode, the scheme achie

... Show More
View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2022
Journal Name
The International Journal Of Nonlinear Analysis And Applications
Improved optimality checkpoint for decision making by using the sub-triangular form
...Show More Authors

Decision-making in Operations Research is the main point in various studies in our real-life applications. However, these different studies focus on this topic. One drawback some of their studies are restricted and have not addressed the nature of values in terms of imprecise data (ID). This paper thus deals with two contributions. First, decreasing the total costs by classifying subsets of costs. Second, improving the optimality solution by the Hungarian assignment approach. This newly proposed method is called fuzzy sub-Triangular form (FS-TF) under ID. The results obtained are exquisite as compared with previous methods including, robust ranking technique, arithmetic operations, magnitude ranking method and centroid ranking method. This

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Aip Conference Proceedings
Numerical solution for weight reduction model due to health campaigns in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Applied System Innovation
Earthquake Hazard Mitigation for Uncertain Building Systems Based on Adaptive Synergetic Control
...Show More Authors

This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Sat Jun 29 2013
Journal Name
Wireless Personal Communications
A Low Cost Route Optimization Scheme for Cluster-Based Proxy MIPv6 Protocol
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Sep 27 2014
Journal Name
Soft Computing
Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks
...Show More Authors

View Publication
Scopus (30)
Crossref (23)
Scopus Clarivate Crossref