Administrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has been introduced to calculate the
association rules between objects; the primary goal of this algorithm is to establish an association rule between
various things. The association rule describes how two or more objects are related.We have employed the
Apriori property and Apriori Mlxtend algorithms in this study and we applied them on the hospital database;
and, by using python coding, the results showed that the performance of Apriori Mlxtend was faster, and it
was 0.38622, and the Apriori property algorithm was 0.090909. That means the Apriori Mlxtend was better
than the Apriori property algorithm.
Multimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were thro
... Show MoreConstruction projects are complicated in nature and require many considerations in contractor selection. One of the complicated interactions is that between performance with the project size, and contractor financial status, and size of projects contracted. At the prequalification stage, the financial requirements restrict the contractors to meet minimum limits in financial criteria such as net worth, working capital and annual turnover, etc. In construction projects, however, there are cases when contractors meet these requirements but show low performance in practice. The model used in the study predicts the performance by training of a neural network. The data used in the study are 72 of the most recent roadw
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreThe ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show More