Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of applying this method
to solve these problems, a comparison is made in this paper between the Newton-Kantorovich method and the
Adomian decomposition method applied to the same non-linear Sturm-Liouville problems under consideration
in this work. As a result of this comparison, the results of the Newton-Kantorovich method agreed with the
results obtained by applying Adomian’s decomposition method.
Gray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
Broyden update is one of the one-rank updates which solves the unconstrained optimization problem but this update does not guarantee the positive definite and the symmetric property of Hessian matrix.
In this paper the guarantee of positive definite and symmetric property for the Hessian matrix will be established by updating the vector which represents the difference between the next gradient and the current gradient of the objective function assumed to be twice continuous and differentiable .Numerical results are reported to compare the proposed method with the Broyden method under standard problems.
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state wi
... Show MoreThe subject of multi- ethnics is one of the most important subjects in the study of political
geography, as multi- ethnics and its consequent problems are global geopolitical phenomena
that started early and reached its peak with the beginning of the twentieth century, because of
major changes in the political landscape that resulted by wars and led to the collapse of many
empires and major powers, a matter which led to put new political maps according to certain
considerations of the colonial powers, especially in Africa and Asia. All these things led to
the most serious challenges based on ethnic and sectarian conflict and led to the development
of geopolitical problems. Among the examples what most countries in th
Heuristic Program proposal for the treatment of talented emotional and Cognitive problems .
1-The Curtent research aims : to identify the needs of gifted students and their problems and Ways to diagnose .
2-reprepare aproposal heuristic program for the treatment of emotional and Cognitive talented problems .
Research . Methodology : analytical and descriptive .
Define the terms
Virt uoso is the per for mance of the privileged Mstmrave performances appear in any area of his Values .
Chapter ll : Includes recipes gifted child and Methods diagnosis gifted by filtrontion and standavds of personal and mental and behavioral Doramwaliman and parental Features and Leader in the detection of the gif
... Show MoreCold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t
In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.
The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).