One technique used to prepare nanoparticles material is Pulsed Laser Ablation in Liquid (PLAL), Silver Oxide nanoparticles (AgO) were prepared by using this technique, where silver target was submerged in ultra-pure water (UPW) at room temperature after that Nd:Yag laser which characteristics by 1064 nm wavelength, Q-switched, and 6ns pulse duration was used to irradiated silver target. This preparation method was used to study the effects of laser irradiation on Nanoparticles synthesized by used varying laser pulse energy 1000 mJ, 500 mJ, and 100 mJ, with 500 pulses each time on the particle size. Nanoparticles are characterized using XRD, SEM, AFM, and UV-Visible spectroscopy. All the structural peaks determined by the XRD test can be indexed as face-centered cubic (FCC) type, the stronger crystalline orientation is located in the (111) plane. The nanoscale particles have an almost spherical shape as inferred from the SEM images. In (1000) mJ laser pulse energy the best smallest particle size was produced. According to AFM results of all films, the particle size 32.45nm, 64.3nm, and 67.86nm respectively for 1000 mJ, 500 mJ, and 100 mJ , the surface roughness affected and increased as increase the laser energy because the increase particle size and aggregation of partials. UV-Visible spectroscopy measured the absorbance of the silver nanoparticle prepared which is increased as increase pulsed laser ablation energy at wavelength 440 nm.
Nanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same
... Show MoreMicrobial antibiotics resistance is considered a serious health issue in the Middle East and developing countries. In this study, the Fe2O3 nanoparticles was prepared chemically, and the particles size and shape were analyzed by using Scan electron microscope (SEM) and X-Ray diffraction (XRD). Different concentration of Fe2O3 nanoparticles were used and examined on E.coli and S. aureus. Using liquid dilution and in vitro cytotoxicity assay by microplate toxicity test (MTT). The microbial cell metabolic activity was measured on gram-negative, gram-positive bacteria and fungi after treating with different concentrations of Fe2O3 nanoparticl
... Show MoreAcinetobacter baumannii is highly adapted to hospital environments, causing persistent chronic infections due to its ability to form biofilms. In this work, the antibiofilm activity of AuNPs with a subMIC concentration of 9.34 μg/ml was investigated by the microtiter plate method against 80 clinical isolates of A. baumannii. The results revealed that the biofilm was significantly (P< 0.05) reduced by 48.2 – 82.1%.
Chemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical pr
... Show MoreAntimicrobial resistance is one of the most significant threats to public health worldwide. As opposed to using traditional antibiotics, which are effective against diseases that are multidrug-resistant, it is vital to concentrate on the most innovative antibacterial compounds. These innate bacterial arsenals under the term «bacteriocins» refer to low-molecularweight, heat-stable, membrane-active, proteolytically degradable, and pore-forming cationic peptides. Due to their ability to attack bacteria, viruses, fungi, and biofilm, bacteriocins appear to be the most promising, currently accessible alternative for addressing the antimicrobial resistance (AMR) problem and minimizing the negative effects of antibiotics on the host’s m
... Show MoreIn this research, the effect of each of the concentrations ( Nd+3) was studied (N) the thickness of the thin disk (d) the number of times that the pumping beam passes through the effective medium of this laser (Mp) the reflectivity of the laser output mirror (R 2) The losses of the effective medium (L) and the pumping power used in achieving the reverse qualification (PP) on each of the pumping threshold capacities (Pp.th) and the output power of the laser (Pout) and the efficiency (ŋ) in Nd3+ thin-disk lasers (TDLs) pumping quasi-three-level With continuous operation (cw), at room temperature, and in the Gaussian mode (TEM00),
We found under these opera
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreIn context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di
... Show MoreThis study was designed to evaluate the role of single session autologous facial fat grafting in correcting facial asymmetries after mixing it with platelet-rich fibrin (PRF) and injecting them into rich vascular facial muscular plane.
Fifteen patients (12 females and 3 males) with age ranging from 18 years to 40 years were included in this study and followed up during 6 months, all the patients were treated in the Al-Shaheed Ghazi Al-Hariri for specialized surgeries hospital (Medical City, Baghdad, Iraq).
Auto
Activated carbon prepared from date stones by chemical activation with ferric chloride (FAC) was used an adsorbent to remove phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) from aqueous solutions. The influence of process variables represented by solution pH value (2-12), adsorbent to adsorbate weight ratio (0.2-1.8), and contact time (30-150 min) on removal percentage and adsorbed amount of Ph and PNPh onto FAC was studied. For PNPh adsorption,( 97.43 %) maximum removal percentage and (48.71 mg/g) adsorbed amount was achieved at (5) solution pH,( 1) adsorbent to adsorbate weight ratio, and (90 min) contact time. While for Ph adsorption, at (4) solution pH, (1.4) absorbent to adsorbate weight ratio, and (120 min) contact
... Show More