A new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphylococcus aureus (Gram positive). This work also studied the effect of using different amounts of nanoparticles on the effectiveness against bacteria and it was found that nanocomposite (P2/Ag 5%) has superior antibacterial properties against Escherichia coli.
Objective:This study involved synthesis of a new series of different five-membered heterocyclic derivatives, testing their antioxidant activity, and examining their potential in vitro antimicrobial agents. Methods: The synthesis of the derivatives involved a three-step process. Initially, succinyl chloride was reacted with methanol, followed by a reaction with 80% hydrazine hydrate through a nucleophilic addition-elimination mechanism, resulting in the formation of succinohydrazide (I). This compound was then employed as a precursor for the synthesis of Schiff bases (II), and (III) by reacting it with m-nitro benzaldehyde and p-nitro benzaldehyde. Following this, a ring closure reaction was applied using thioglycolic acid, glycolic acid,
... Show MoreEfficacy of Varnishes with: Bioactive Glass, Recaldent Technology and Silver Diamine Fluoride in Comparison with Sodium Fluoride on Tooth Surface Micro-hardness (an In Vitro Study)
This study investigates the influence of silver oxide (Ag2O) concentration on the optical characteristics of phosphate bioactive glasses (PBGs). PBGs have emerged as promising alternatives to conventional silicate glasses in the medical field due to their excellent bioactivity and chemical resistance. Samples with varying Ag2O concentrations (0, 0.25, 0.5, and 0.75g) were sintered at 780°C for 2 hrs in an electric furnace. The samples were subjected to Fourier transfer infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) tests to assess their functional groups and optical properties. By analyzing the FTIR spectrum of phosphate bioactive glass containing different amounts of Ag2O, it is
... Show MoreA new carbonyl complexes of triazole and oxadiazole were synthesized. These complexes were identified and their structural geometric were suggested by using FT-IR and UV-Vis spectra, conductivity measurements and other chemical and physical properties. The spectra data (FT-IR, UV, Vis.) with the substantial aid of group theoretical calculations gave so many evidences for the proposed geometries and the type of bonding of these compounds
New nitrone and selenonitrone compounds were synthesized. The condensation method between N-(2-hydroxyethyl) hydroxylamine and substituted carbonyl compounds such as [benzil, 4, 4́-dichlorobenzil and 2,2́ -dinitrobenzil] afforded a variety of new nitrone compounds while the condensation between N-benzylhydroxylamine and substituted selenocarbonyl compounds such as [di(4-fluorobenzoyl) diselenide and (4-chlorobenzoyl selenonitrile] obtained selenonitrone compounds. The condensation of N-4-chlorophenylhydroxylamine with dibenzoyl diselenide obtained another type of selenonitrone compounds. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR,
... Show MoreBackground: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and me
... Show MoreThe new ligand [N1,N4-bis((1H-benzo[d]Glyoxalin-2-yl)carbamothioyl)Butanedi amide] (NCB) derived from Butanedioyl diisothiocyanate with 2-aminobenz imidazole was used to prepare a chain of new metal complexes of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Ag(I), Cd(II) by general formula [M(NCB)]Xn ,Where M= Cr(III), n=3, X=Cl; Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Cd(II) ,n=2 , X=Cl; Ag(I), n=1, X=NO3. Characterized compounds on the basis of 1H, 13CNMR (for (NCB), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H, %N and %S, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA),while its corrosion inhibition for mild steel in Ca(OH)2 solution is studied by weight loss. These measureme
... Show MoreAn electrochemical sensor based on manganese dioxide nanorodMnO2and Graphene oxide (GO) functionalized with 4-amino, 3-substituted 1H, 1, 2, 4 Triazole 5(4H) thion (FGO)/MnO2Nanocompositewas developed for voltammetric determination of Tetracycline (TET).The working electrode WE of SPCE was modified bya drop casting method. X-ray powder diffractometer (XRD), scanning electron microscopy (SEM) and FT-IR were employed to characterize the synthesized FGO/MnO2. The determination of TET at the modified electrode was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in the phosphate buffer solution (PBS).TET show sharp increase in the oxidation peaks in the pH 2.Voltammetric characteristics of TET (Epa, Ipa) were estimate
... Show MoreThe electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati