This article studied some linear and nonlinear optical characteristics of different pH solutions from anthocyanin dye extract at 180 oC from red cabbage. First, the linear spectral characteristics, including absorption and transmittance in the range 400-800 nm for anthocyanin solution 5% v/v with different pHs, were achieved utilizing a UV/VIS spectrophotometer. The experimental results reveal a shift in the absorption toward the longer wavelength direction as pH values increment. Then, the nonlinear features were measured using the Z-scan technique with a CW 532 nm laser to measure the nonlinear absorption coefficient through an open aperture. A close aperture (diameter 2 mm) calculates the nonlinear refractive index. The open Z-scan shows that as the pH increases, the sample decreases transmittance, indicative a two-photon absorption process, and the samples act as a collecting lens for the laser beam. In contrast, the results with a closed Z-scan indicate that the nonlinear absorption coefficient displays a self-focusing nonlinearity. Also, the nonlinear susceptibility decreased by increasing the value of the pH solution. Due to obvious anthocyanin dye nonlinearity dependence value on dye pH, it is possible to use the natural anthocyanin dye as a photonic device
Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti
... Show MoreNew technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier,
... Show More
Linear Feedback Shift Register (LFSR) systems are used widely in stream cipher systems field. Any system of LFSR's which wauldn't be attacked must first construct the system of linear equations of the LFSR unit. In this paper methods are developed to construct a system of linear/nonlinear equations of key generator (a LFSR's system) where the effect of combining (Boolean) function of LFSR is obvious. Before solving the system of linear/nonlinear equations by using one of the known classical methods, we have to test the uniqueness of the solution. Finding the solution to these systems mean finding the initial values of the LFSR's of the generator. Two known generators are used to test and apply the ideas of the paper,
... Show MoreThin films whose compositions can be expressed by (GeS2)100-xGax (x=0, 6,12,18) formula were obtained by thermal evaporation technique of bulk material at a base pressure of ~10-5 torr. Optical transmission spectra of the films were taken in the range of 300-1100 nm then the optical band gap, tail width of localized states, refractive index, extinction coefficient were calculated. The optical constants were found to increase at low concentration of Ga (0 to12%) while they decreases with further addition of Ga. The optical band gap was found to change in opposite manner to that of optical constants. The variation in the optical parameters are explained in terms of average bond energy
... Show Morein this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
Research Summary
First: the problem of research and its importance
The teacher's success in facilitating the students' learning and growth according to the educational and educational goals set out, he must identify the problems of discipline of students in the classroom in terms of sources and reasons and types and methods of prevention and treatment and the teacher to remember that success in his teaching and instruction is not completed more fully once he has the information And knowledge of the subject of the lesson, but must understand the dynamics of the group (class group) and master the skills of classroom management, su
... Show MoreAbstract:
In this study a type of polymeric composites from melting poly propylene as a basic substance with Palm fronds powder were prepared. Evaluation of polymeric composites was done by studying some of it is mechanical properties, which included:Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and Compression Strength (C.S). The polymeric composites were studied before and after reinforcment by comparing between them. There was an increase in resistance of Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and compression Strength (C.S). Also, the effect of some acids were studied such as (HCl, H2
Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K