Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB84 protocol with the AES algorithm in
WSN security. The results of analysis indicated a high level of security between the data by depending on the
generation of secure keys, and reached an accuracy rate of about (80-95) % based on using NIST statistical.
The efficiency of the work increased to 0.704 after using the Quantum Bit Error Rate equation, eventually
increasing the network performance. This results in the reduction of the overall amount of energy, and the time
required for performing the key exchange in the encryption and decryption processes decreased.
Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
This research analyzes the level of the short circuit effect of the Iraqi super network and decides the suitable location for the High Voltage Direct Current (HVDC) connections in order to obtain the best short circuit reduction of the total currents of the buses in the network. The proposed method depends on choosing the transmission lines for Alternating current (AC) system that suffers from high Short Circuit Levels (SCLs) in order to reduce its impact on the transmission system and on the lines adjacent to it and this after replacing the alternating current (AC) line by direct current (DC) line. In this paper, Power System Simulator for Engineering (PSS/E) is used to model two types of HVDC lines in an effective regi
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
we studied the effect of low level laser therapy (LLLT) using diode laser with wavelength of (790-805) nm in promotion and enhancement of wound healing of episiotomy and to evaluate the analgesic effect of LLLT in reducing the pain sensation caused by the episiotomy wounds. Nineteen women with episiotomy wound were selected and divided into three groups; 1st group (group No.1: control group) given antibiotics without laser therapy, in the 2nd group (group No.2) the wounds were exposed to laser therapy (4 sessions, each session with energy density of 19.90 J /cm2 every other day ) and systemic antibiotics were prescribed for 1 week. In the 3rd group (group No.3) the wounds were exposed to laser therapy (4 sessions, the same as in the 2nd
... Show MoreThe purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be
... Show MorePurpose This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 o
... Show More