Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB84 protocol with the AES algorithm in
WSN security. The results of analysis indicated a high level of security between the data by depending on the
generation of secure keys, and reached an accuracy rate of about (80-95) % based on using NIST statistical.
The efficiency of the work increased to 0.704 after using the Quantum Bit Error Rate equation, eventually
increasing the network performance. This results in the reduction of the overall amount of energy, and the time
required for performing the key exchange in the encryption and decryption processes decreased.
The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreThe individual average income is considered one of the most used criteria for the distinguishing between the developed and the developing countries, for this reason the efforts of economic development has been construed on increasing the average national income, the investment expenditures is considered one of the basic foundations for economic development operation which lead to the expanding the prodection power of the economy, and increasing the level of national income in an averages greaten than the primary expenditures due to the work and interaction between the multiplier and the accelerator. But the ability of the economic sectors in the generation of national income as a result of the primary expenditures is different fr
... Show MoreThe no parity problem causes determining is the most interesting case by doctors and researchers in this filed, because it helps them to pre-discovering of it, from this point the important of this paper is came, which tries to determine the priority causes and its fluency, thus it helps doctors and researchers to determine the problem and it’s fluency of increase or decrease the active sperm which fluencies of peregrinating. We use the censored regression (Tobit) model to analyze the data that contains 150 observations may by useful to whom it concern.
... Show More
The purpose of this work was to study the effects of the Nd:YAG laser on exposed dentinal
tubules of human extracted teeth using a scanning electron microscope (SEM). Eighty 2.5mm-thick
slices were cut at the cementoenamel junction from 20 extracted human teeth with an electric saw. A
diamond bur was used to remove the cementum layer to expose the dentinal tubules. Each slice was
sectioned into four equal quadrants and the specimens were randomly divided into four groups (A to D ).
Groups B to D were lased for 2 mins using an Nd:YAG laser at 6 pulses per second at energy outputs of
80 , 100 and 120 mJ. Group A served as control. Under SEM observation, nonlased specimens showed
numerous exposed dentinal tubules. SEM o
This research work involves the preparation of nano activated carbonand macro activated carbon from corn seeds with a various mixing ratio ofpotassium hydroxide (1:0, 1:0.2, 1:0.4, 1:0.6, 1:0.8 and 1:1) % using thermaland micro radiation carbonization to identify the best mixing ratio. At studyto confirmed that the efficiency and effectiveness of the prepared of activatedcarbon samples increase when ratio potassium hydroxide increase with athermal and micro radiation carbonization was used. The study of samplesexternal surface area was performed via studying the adsorption of methyleneblue from their aqueous solution, also measured the internal surface area wasperformed via studying the adsorption of iodine from their aqueous solution.Measu
... Show MoreResearch on the role of organizational change in easing the organizational conflict focuses for being one of the important topics and relatively modern and which have a significant impact on the future of organizations, so this study was to identify the relationship and the impact of organizational change and of deportation (technological, organizational structure, human resources, the change in the task) at the organizational conflict in the Earth company link Iraq, in order to reach the goals of the research, it has been the development of a questionnaire distributed to a random sample of (100) composed employees from managers and heads of departments and the people and staff at the Earth company link Iraq, the study found: the
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.