Ecological risk assessment of mercury contaminant has a means to analyze the ecological risk aspect of ecosystem using the potential impact of mercury pollution in soil, water and organism. The ecological risk assessment in a coastal area can be shown by mangrove zonation, clustering and interpolation of mercury accumulation. This research aims to analyze ecological risk assessment of potential mercury (including bioaccumulation and translocation) using indicators of species distribution, clustering, zonation and interpolation of mercury accumulation. The results showed that the Segara Anakan had a high risk of mercury pollution, using indicators like as the potential of mercury contaminant in water body was 0137±0.0137 ppm, substrate and sediment were 0.0134±0.0212 ppm. To reduce the impact of mercury pollution could be conducted by mangrove planting, following the ability of mercury accumulation in stem and bark between 0.011 and 0.064 ppm, in mangrove roots between 0.0260 and 0.0690 ppm and in mangrove leaves between 0.0020 and 0.0120 ppm,. The second indicator of mangrove ability to reduce the impact of mercury contaminant used the indicator of bioaccumulation factors, which had a range between 0.0210 and 0.4751, and the translocation factors were between 0.0459 and 1.0547. The results also showed that: Avicennia marina, Sonneratia alba, Rhizophora apiculate, Rhizophora mucronata and Nypa frutican had a good ability to accumulate and reduce the impact of mercury contamination.
Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreThe main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope
... Show MoreIndole acetic acid (IAA) produced from F. oxysporum (F2) was purified by several steps included extraction by cold ethyl acetate ; Column chromatography using silica gel and TLC chromatography . The pure indole acetic acid (IAA) which produce by F. oxysporum (IAA) was tested by ultraviolet spectra at (200-300)nm ; and appear that the maximum absorbance at 229nm , the high performance liquid chromatography (HPLC) used to test the purity of the indole acetic acid and the results showed one peak at appearance time 3.822 min
In this work, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). Because of a trade off between the etalon finesse values and driving terms, an optimization procedures have been done on the InSb etalon/CO laser parameters, using critical switching irradiance (Ic) via simulation systems of optimization procedures of optical cavity. in order to achieve the minimum switching power and faster switching time, the optimization parameters of the finesse values and driving terms on optical bistability and switching dynamics must be studied.
... Show MoreLow bearing capacity of weak soil under shallow footings represents one of construction problems.
Kaolin with water content converges to liquid limit used to represent the weak soil under shallow
footing prototype. On the other hand, fly ash, which can be defined as undesirable industrial waste
material, was used to improve the bearing capacity of the soft soil considered in this research. The soft
soil was prepared in steel box (36×36×25) cm and shallow square footing prototype (6×6) cm were
used .Group of physical and chemical tests were conducted on kaolin and fly ash. The soft soil was
improved by a bed of compacted fly ash placed under the footing with dimensions equal to that of
footing but with different de
This studies deals with investigated the potential of a Iraqi bentonite clay for the adsorption of bromo phenol red dye from contaminated water. Impulse adsorption experiments were performed. The contact time influence of initial dye concentration, temperature, pH, ionic strength, partical size adsorbent and adsorbent dosage on bromo phenol red adsorption are investigated in a series of batch adsorption experiments. Adsorption equilibrium data were analyzed and described by the Freundlich, Langmuir and temkin isotherms equations. Thermodynamic parameters inclusive the Gibbs free energy (∆G• ), enthalpy (∆H• ), and entropy (∆S• ), were also calculated. These parameters specified that adsorption of bromo phenol red onto bentonite
... Show More