Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patients into two groups(severe cases and non-severe cases groups). Ferritin, lactate dehydrogenase LDH, D-dimer and CRP were markedly increased in COVID-19 patients in the first group (severe cases). Our findings imply that early measured levels of (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) are linked to a decreased probability of COVID-19 severity. Elevated levels of this biomarker may predict COVID severity development.
For the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreThe importance of vibrations in rotating rotors in engineering applications has been examined, as has the best approach to interpreting vibration data. The most extensively used analytical approaches for rotating shaft vibration analysis have been investigated. In this research, a detailed study was made of the Rayleigh and Dunkerley methods due to their importance in the special calculations to find the amplitude of vibrations in the rotation system. The multi-node method was used to calculate both Dunkerley's and Rayleigh's methods. An experimental platform was built to study the vibrations that occur in the rotating shafts, and the results were compared with theoretical calculations and with different distances of the bearings. It pro
... Show MoreCognitive stylistics also well-known as cognitive poetics is a cognitive approach to language. This study aims at examining literary language by showing how Schema Theory and Text World Theory can be useful in the interpretation of literary texts. Further, the study attempts to uncover how readers can connect between the text world and the real world. Putting it differently, the study aims at showing how the interaction between ‘discourse world’ and ‘text world’. How readers can bring their own experience as well as their background knowledge to interact with the text and make interpretive connections. Schema and text world theories are useful tools in cognitive stylistic studies. The reader's perception o
... Show MoreThe main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm
... Show MoreAbstract:
The achievement of economic and social welfare for individual is the main target to all policies that adopted by all countries worldwide either were economic, social, political or others. The obtaining of education by individuals and especially the higher education is one of the most important determinates in achieving the wellbeing and lasted economic development. This is because via the higher education new fields can be opened in front of individuals in order to get adequate jobs associated with their scientific specialization. This is allowing educated individuals gain higher income that can reduce the gap of income inequality.
Thus, this paper aims to analysis the n
... Show MoreBN Rashid, AKF Jameel, Al- Ustath: Quarterly Scientific Journal, 2017 - Cited by 15
Abstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreTwo dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show More