Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Fatty Acid Methyl Ester (FAME) produced from biomass offers several advantages such as renewability and sustainability. The typical production process of FAME is accompanied by various impurities such as alcohol, soap, glycerol, and the spent catalyst. Therefore, the most challenging part of the FAME production is the purification process. In this work, a novel application of bulk liquid membrane (BLM) developed from conventional solvent extraction methods was investigated for the removal of glycerol from FAME. The extraction and stripping processes are combined into a single system, allowing for simultaneous solvent recovery whereby low-cost quaternary ammonium salt-glycerol-based deep eutectic solvent (DES) is used as the membrane phase.
... Show MoreThe research seeks to identify the impact of fraud detection skills in the settlement of compensatory claims for the fire and accident insurance portfolio and the reflection of these skills in preventing and reducing the payment of undue compensation to some who seek profit and enrichment at the expense of the insurance contract. And compensatory claims in the portfolio of fire and accident insurance in the two research companies, which show the effect and positive return of the detection skills and settlement of the compensation on the amount of actual compensation against the claims inflated by some of the insured, The research sample consisted of (70) respondents from a community size (85) individuals between the director and assistan
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreUpper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Background: Deep vein thrombosis is a multi causal disease and its one of most common venous disorder, but only one quarter of the patients who have signs and symptoms of a clot in the vein actually have thrombosis and need treatment .The disease can be difficult to diagnose. Venous ultrasound in combination with clinical finding is accurate for venous thromboembolism, its costly because a large number of patients with suspicious signs and symptoms. Venography still the gold standard for venous thromboembolism but it is invasive. The D-dimer increasingly is being seen as valuable tool rolling out venous thromboembolism and sparing low risk patients for further workup.Objectives: this study has designed the role of D-dimer to confirm diag
... Show MoreRapid and accurate identification of Methicillin Resistant Staphylococcus aureus is essential in limiting the spread of this bacterium. The aim of study is the detection of Methicillin Resistant Staphylococcus aureus (MRSA) and determining their susceptibility to some antimicrobial agent. A total of fifty clinical Staphylococcus aureus, isolated from the nose of health work staff in surgery unit of Kalar general hospital and from ear of patients attended to the same hospital. The susceptibilities of isolates were determined by the disc diffusion method with oxacillin (1 ?g) and cefoxitin (30 ?g), and by the mannitol salt agar supplemented with cefoxitin (MSA-CFOX), susceptibilities of isolates to other antimicrobial agent were determined b
... Show More