Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
Background: Adipose derived-mesenchymal stem cells have been used as an alternative to bone marrow cells in this study. Objective: We investigated the in vitro isolation, identification, and differentiation of stem cells into neuron cells, in order to produce neuron cells via cell culture, which would be useful in nerve injury treatment. Method: Mouse adipose mesenchymal stem cells were dissected from the abdominal subcutaneous region. Neural differentiation was induced using β-mercaptoethanol. This study included two different neural stage markers, i.e. nestin and neurofilament light-chain, to detect immature and mature neurons, respectively. Results: The immunocytochemistry results showed that the use of β-mercaptoethanol resulted in
... Show MoreThis study aimed to identify the employment of the social networking platform «Twitter» in the 2016 presidential campaign led by the Republican candidate, Donald Trump; and analyse his tweets through his personal account on «Twitter» for the period from: 10/ 8/2016 to: 11/ 8/2016 which represents the last month of the election campaign.
The study belongs to the type of descriptive studies using the analytical method through an analysis index that includes sub-categories and other secondary categories. The research has adopted the ordinary unit of information material (tweet) as an analysis unit for this purpose.
... Show MoreThis investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be
... Show MoreArtificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show MoreTranslation is a dynamic and living process that cannot be considered equal to the original text and requires the appropriate structure, language, thought and culture of the target language, and the translator's intellectual, linguistic and cultural influences inadvertently penetrate into the translated text. It causes heterogeneity of the destination text with the source text.
Admiral's theory is trying to help by providing components and suggested approaches to resolve these inconsistencies. In the meantime, in addition to the mission of putting words together, the translator must sometimes sit in the position of the reader and judge and evaluate the translated text in order to understand its shortcomings and try to correct it a
... Show MoreThe research seeks to find out the extent of the coverage of the Mosul press to the issues of psychological and social effects of the organization "IS" on the community of Mosul, by analyzing the content of the newspapers “Economic City” and “Mosul News”. As well as to stand at the types of psychological and social effects and their repercussions on the Mosul community including figures, statistics and evidence that were covered in the theoretical study of these topics.
This study is the first scientific diagnosis to reveal the size and types of psychological and social effects of the “ISIS” organization through what was monitored by the Mosul press. The study seeks to draw the attention of officials, decision-m
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show More