Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MoreThis paper critically looks at the studies that investigated the Social Network Sites in the Arab region asking whether they made a practical addition to the field of information and communication sciences or not. The study tried to lift the ambiguity of the variety of names, as well as the most important theoretical and methodological approaches used by these studies highlighting its scientific limitations. The research discussed the most important concepts used by these studies such as Interactivity, Citizen Journalism, Public Sphere, and Social Capital and showed the problems of using them because each concept comes out of a specific view to these websites. The importation of these concepts from a cultural and social context to an Ara
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
This dissertation studies the application of equivalence theory developed by Mona Baker in translating Persian to Arabic. Among various translation methodologies, Mona Baker’s bottom-up equivalency approach is unique in several ways. Baker’s translation approach is a multistep process. It starts with studying the smallest linguistic unit, “the word”, and then evolves above the level of words leading to the translation of the entire text. Equivalence at the word level, i.e., word for word method, is the core point of Baker’s approach.
This study evaluates the use of Baker’s approach in translation from Persian to Arabic, mainly because finding the correct equivalence is a major challenge in this translation. Additionall
... Show MoreMedia has become a common platform for communication as a tool of offense. English language has many insult words which are commonly used in the world of media. This study investigates the socio-pragmatic aspect of insulting in English news. It aims at identifying and analysing insult words and expressions used by news presenters. To specify the problem of the study, language has a harmful power that hurts the addressees and seriously harm their psychological well-being. The insulting words that are an element of all human languages are the source of this abusive power. The study questions sought to find out are if news presenters use insult words, which insult words, and in what social contexts. In this study, the descriptive method is use
... Show MoreThe core idea of this study revolves around the news coverage by Iraqi satellite channels regarding corruption issues and their implications on the public's perception of the political process. The researcher designed a content analysis form encompassing both primary and sub-categories of news bulletins from the channels, Dijlah and Al-Itijah, spanning from 01/06/2021 to 31/08/2021, using a comprehensive enumeration method. The chosen timeframe preceded the parliamentary elections held in October 2021. Employing a descriptive-analytical approach coupled with observation, the researcher derived results that met the study's objectives. Among these findings, news items enhanced with video content topped the categorie
... Show MoreThe purpose of this research is to demonstrate the effectiveness of a program to address the problem of mixing similar letters in the Arabic language for students in the second grade of primary and to achieve the goal of the research. The researcher followed the experimental method to suit the nature of this research and found that there are statistically significant differences between the tribal and remote tests, The effectiveness of the proposed educational program. At the end of the research, the researcher recommends several recommendations, the most important of which are: 1 - Training students to correct pronunciation of the outlets, especially in the first three stages of primary education (primary) and the use of direct training
... Show More