Preferred Language
Articles
/
bsj-7427
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (15)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Oct 13 2022
Journal Name
Computation
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Feb 08 2025
Journal Name
Al–bahith Al–a'alami
Preferences of the Iraqi Public towards Arab News Channels Programs and Materials (Al Jazeera, Al Arabiya, Al Ekhbariya Satellite Channels: a field Study)
...Show More Authors

Broadcasting across satellites has become an important media phenomenon and largely available for watchers. As the receiver can see the events at the very moment and at any spot in the world. This study aims to discover the degree of the extent of exposure of Iraqi people to the news broadcasting satellites in Arabic language, (Al Jazeera, Al Arabiya, Al Ekhbariya Satellite Channels) as one of the media that serves the public; and to discover the range of these Satellite Channels in covering the local Iraqi situation in different sides and aspects; and to know the significance of the Iraqi people in watching those news programmers; and state the motives behind the Iraqi public's dependence on these channels.

The

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Recognition of Human Facial Expressions Using DCT-DWT and Artificial Neural Network
...Show More Authors

Facial expressions are a term that expresses a group of movements of the facial fore muscles that is related to one's own human emotions. Human–computer interaction (HCI) has been considered as one of the most attractive and fastest-growing fields. Adding emotional expression’s recognition to expect the users’ feelings and emotional state can drastically improves HCI. This paper aims to demonstrate the three most important facial expressions (happiness, sadness, and surprise). It contains three stages; first, the preprocessing stage was performed to enhance the facial images. Second, the feature extraction stage depended on Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) methods. Third, the recognition stage w

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Mon Nov 19 2018
Journal Name
Al–bahith Al–a'alami
A Proposed Vision for Editing News Forms
...Show More Authors

This research deals with a very important subject as it tries to change the theoretical and scientific heritage and some professional rules adopted in the newsroom. Most media students have difficulties in writing news for press correctly. The researcher tries to identify the compatibility of what is published in local news agencies with professional and academic standards.
The research finds detailed editorial rules for a number of news formats which will play an important role in writing news for press easily, especially for the beginners and newcomers. Also, it discovers a new fact denying the beliefs of some researchers and writers in not having news conclusion in news edited according to the inverted pyramid pattern.
The re

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 International Conference On Electrical Engineering And Computer Science (icecos)
An Evolutionary Algorithm for Community Detection Using an Improved Mutation Operator
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
ON-Line MRI Image Selection and Tumor Classification using Artificial Neural Network
...Show More Authors

When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Detection of COVID-19 in X-Rays by Convolutional Neural Networks
...Show More Authors

      Coronavirus is considered the first virus to sweep the world in the twenty-first century, it appeared by the end of 2019. It started in the Chinese city of Wuhan and began to spread in different regions around the world too quickly and uncontrollable due to the lack of medical examinations and their inefficiency. So, the process of detecting the disease needs an accurate and quickly detection techniques and tools. The X-Ray images are good and quick in diagnosing the disease, but an automatic and accurate diagnosis is needed. Therefore, this paper presents an automated methodology based on deep learning in diagnosing COVID-19. In this paper, the proposed system is using a convolutional neural network, which is considered one o

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (7)
Scopus Crossref