Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
The current research aims to evaluate the level of inclusive leadership within the General Secretariat for the Council of Ministers, and its role in achieving integration in work through the need to improve relationships between different administrative levels, facilitate participation, expression of opinions, and belonging to the organization. In order to achieve the research objective, the descriptive analytical statistical method was chosen using the SPSS V.25 programs, with various statistical methods and measures, including mean, standard deviation, variance coefficient, relative importance, and simple regression, through a questionnaire tool for data collection. The research community included the leadership in the sample of resear
... Show MoreThe Al-Kindy College Medical Journal (KCMJ) is an Iraqi scholarly journal published by the Al-Kindy College of Medicine, University of Baghdad. It was officially founded in 2004. It is a peer-reviewed journal, published in both online and printed forms. It has a mission to offer a publication platform that mirrors recent knowledge and findings in the field of medicine and medical sciences. It publishes various types of articles, including editorial, review article, research article, brief report, case report, and letter to editor. It accepts articles in the English language. It was biannually published till 2021 when it started to launch three issues per year. The journal is registered with numerous partners, including Iraqi Academi
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreWith the fast-growing of neural machine translation (NMT), there is still a lack of insight into the performance of these models on semantically and culturally rich texts, especially between linguistically distant languages like Arabic and English. In this paper, we investigate the performance of two state-of-the-art AI translation systems (ChatGPT, DeepSeek) when translating Arabic texts to English in three different genres: journalistic, literary, and technical. The study utilizes a mixed-method evaluation methodology based on a balanced corpus of 60 Arabic source texts from the three genres. Objective measures, including BLEU and TER, and subjective evaluations from human translators were employed to determine the semantic, contextual an
... Show MoreBeta-thalassemia major (β-TM) is inheritable condition with many complications especially in children. The blood-borne viral infection was proposed as a risk factor due to recurrent blood transfusion regimen (hemotherapy).
This study aimed to investigate Human parvovirus B19 (PVB19) prevalence in β-TM patients by serological and molecular means.
This is a cross-section
The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.