Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreThis study aimed at identifying the effect of violence on speech disorders concerning Arab Broadcasting . Language is a pot of thought and a mirror of human civilization and communication tool, but the Arabic language is suffering a lot of extraneous terms them, particularly through the media. This study attempts to answer the following question: Is the phenomenon of linguistic duality in the Media reflected negatively on the rules of the classical language? The study deals with the explanation and interpretation of the phenomenon that has become slang exist in our Media More. And the study suggests re- consideration of the value in the Media ,hence the problem will be resolved.
The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show MoreAbstract
Language is one of God’s blessings to human beings through which he
distingushed them from other creatures, then how if this language was arabic.
God honored this language and in which he descended his Gracious Boole
that gave it glory and magnificance, and made it an immortal revelation to the
arab nation in their poetry, oration, history and human tendency to the life of
knowledge, mind leadershipe, innovation and progress.
This study aimed at evaluating the arabic language come program for
the new teachers. The sample was of (25) participants who were shown a
questionaire consisting of (60) items distributed on (9) fields. Then, the data
was processed statisically by using preauency rate, Kai s
In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
This is a research that deals with one of the topics of Arabic grammar, namely, the plural noun, and it is not hidden from the students the importance of grammatical topics in preserving the tongue from melody, and what it has of fundamental importance in knowing the graphic miracles of the Qur’an, and I called this research:
(plural noun in Arabic a grammatical study)
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreArabic calligraphy has great importance in the printing designs that are often on the written character-based to perform functional goals and to achieve some of the aesthetic values in design work, has led major developments in the field of computer manufacturing and design software for the design and layout to increase to deal with the programmed character for the purposes of typesetting has confronted this Find the Arab character programmed for the purposes of typesetting for the detection of the most important design interventions that underwent the Arabic letter written to turn it into a programmed image intended for the purposes of the printing and typesetting has been addressed in the context of which the theoretical types of
... Show More