Xanthomonas axonopodis pv glycines (Xag) is a pathogen that causes pustule disease in soybeans. Many
techniques for controlling this disease have been widely developed, one of which is the use of biological agents.
Bacillus sp. from the soybean phyllosphere is a biological agent that has the potential to suppress the
development of pustule disease. One of the biological control mechanisms is through biochemical induction
of plant resistance which includes the accumulation of phenols, salicylic acid compounds, and peroxidase
enzymes. Bacillus subtilis JB12 and Bacillus velezensis ST32 are two bacteria isolated from the soybean
phyllosphere which have previously been known to suppress Xag through an antibiosis mechanism. This study
aimed to determine the potential of Bacillus subtilis JB12 and Bacillus velezensis ST32 in inducing soybean
resistance against Xag infection. This research was carried out in two stages, the induction of resistance to
soybean germination and an experiment in a greenhouse. This study consisted of 4 treatments and 5
replications, including P0 (Xag inoculation), P1 (Bacillus subtilis JB12 inoculation), P2 (Bacillus velezensis
ST32), and P3 (Bacillus subtilis JB12 + Bacillus velezensis ST32 inoculation). Observations were made on
the content of phenolic compounds, peroxidase enzyme activity, and the development of soybean pustule
disease. The results showed differences in phenol content and peroxidase activity at the two stages of the study.
Seed treatment with both isolates of Bacillus sp was able to increase the phenol content of soybean sprouts up
to 3 - 5 days after inoculation (dai). Phenol content then decreased and was followed by an increase in the
peroxidase activity up to 7 dai. The application of Xag and two isolates of Bacillus sp. in soybean plants caused
the phenol content to fluctuate and peroxidase activity to decrease. Bacillus subtilis JB12 in general played a
better role in increasing phenol content and peroxidase enzyme activity in soybean than Bacillus velezensis
ST32. The application of two isolates of Bacillus sp. was not able to prolong the incubation period and reduce
the severity of the pustule disease 14 days after inoculation.
The gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content. Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by using a mixture
... Show MoreBackground: The stethoscope is a tool that doctors use daily in the examination of patients and it can take part in the transmission of health care-associated infections. In a single day it may come in direct contact with multiple patients and the intra hospital environment may be contaminated by various type of bacteria and possibly transmit to others.
Objective:- The study was to know the attitude and knowledge about the stethoscope hygiene behavior among physicians and to determine the types of bacterial agents that can contaminate stethoscopes.
Type of the study: The study was a cross-sectional study
Metho
... Show MoreBackground: Cervical ectopy advanced to erosion is one of the common conditions in gynecological and pathological study. It is considered as a physiologic condition resulting from columnar epithelium migration from the cervical canal into the vaginal portion of the cervix, in which no treatment for asymptomatic cervical ectropion can be given. Treatment can be accomplished via thermal cauterization (Electro cautery), Cryosurgery. CO2 laser therapy is another modality of treatment.
Objective: To study the effectiveness of CO2 laser therapy and evaluate it as a biomedical tool for the treatment of cervical ectropion. The study was done at Laser Medicine Research Clinic at the
... Show MoreCopper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreBox-Wilson experimental design method was employed to optimized lead ions removal efficiency by bulk liquid membrane (BLM) method. The optimization procedure was primarily based on four impartial relevant parameters: pH of feed phase (4-6), pH of stripping phase (9-11), carrier concentration TBP (5-10) %, and initial metal concentration (60-120 ppm). maximum recovery efficiency of lead ions is 83.852% was virtually done following thirty one-of-a-kind experimental runs, as exact through 24-Central Composite Design (CCD). The best values for the aforementioned four parameters, corresponding to the most restoration efficiency were: 5, 10, 7.5% (v/v), and 90 mg/l, respectively. The obtained experimental data had been
... Show MoreKE Sharquie, AA Noaimi, EA Al-Janabi, Our Dermatology Online, 2014 - Cited by 11
Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field
... Show MoreFabrication of porous clay refractory insulating specimens from Iraqi kaolin with different percentage of Expanded Polystyrene (EPS) waste crumbs additions were investigated. After mixing and forming by hand molding, the specimens was dried and fired at 1300 oC. The structural, physical, mechanical and thermal properties of the refractory insulating products were measured. Maximum addition of EPS (1.25 wt%) lead to reduce the linear shrinkage to less than 1.7% and increased apparent porosity up to 50 %. As well as, the density, Modulus of rupture and thermal conductivity were reduced to 1.39 g/cm3, 4.1 MPa and 0.21 W/m.K, respectively. The final outcome, addition of EPS showed good results in the formation of pores without distorting the
... Show More