A series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these synthesized compounds were tested insilico selectivity toward COX-1 and COX-2 and in vitro for their anti-inflammatory efficacy . In vitro testing demonstrated that all of the produced compounds had significantly stronger activity against the COX-2 enzyme than COX-1. Among these, compound 1 displayed the most potent inhibitory activity with an IC50 value of 0.19 µM compared to standard drug celecoxib (IC50 = 0.29 µM). The most active derivative compound1 was oriented towards the active site and occupied the target enzyme based on the docking investigation against COX-1 and COX-2. In addition, insilico investigations found that COX-2 has a higher inhibitory activity than COX-1
Background: Essential oils extracted from plants have been widely used in antimicrobial activity, particularly the Callistemon viminalis, with a high number of essential oils extracted. Objectives: To identify the chemical composition of essential oil derived from Callistemon viminalis and evaluates its antimicrobial activity against selected bacterial and fungal strains. Subjects and methods: During the study, the antimicrobial activity of different selected essential oils on some bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, and Streptococcus pneumonia) and fungus (Candida albicans) was evalua |
Photodecomposition of dichlorobis N [4-Azo benzene aniline)2-hydroxy benzilidene] Copper (II) (Complexe A1) and dichloro N[2-Azo 3- sulphonic -2- naphthol) 6- carboxylic 2- hydroxy benzilidene] copper (II) (Complex A2).have been performed at λ = 373 nm for complex A1and at λ = 358 nm for complex A2 in dimethyl sulphoxide at 25C◦. the absorbance spectrum of these complexes have been recorded with time of irradiation in order to examine the kinetics of photodecay. The apparent rate constant (Kd) for the first order reaction has been calculated and found to be 1.1 ×10-2 min-1 for complexe A1 and 2.34 × 10-2 min-1 for camplexe A2. the primary quantum yields (Ø ) ha
... Show MoreThis research, involved synthesis of some new 1,2,3-triazoline and 1,2,3,4- tetrazole derivatives from antharanilic acid as starting material .The first step includes formation of 2-Mercapto-3-phenyl-4(3H)Quinazolinone (0) through reacted of anthranilic acid with phenylisothiocyanate in ethanol, then compound (0) reaction with chloro acetyl chloride in dimethyl foramamide (DMF) to prepare intermediate S-(α-chloroaceto-2-yl)-3-phenylquinazolin-4(3H)-one (1); compound (1) reacted with sodium azide to yield S-(α-azidoaceto-2-yl)-3-phenylquinazolin-4(3H)-one (2), while Schiff bases (3-10) were prepared from condensation of substituted primary aromatic amines with different aromatic aldehydes in absolute ethanol as a solvent. Compound (2)
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreThe free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with th
... Show Moreتضمن البحث دراسة تأثير بعض مركبات قواعد شيف الجديدة على فعالية أنزيم الكولين استريز في مصل دم الإنسان وقد لوحظ بأن المركبات المستعملة تسبب تنشيط فعالية الانزيم وباستعمال تراكيز مختلفة من هذه المركبات ودراسة نوع التثبيط اظهرت النتائج المستحصله من رسم line weaver Burk ان التثبيط يكون غير تنافسي وكانت النسبه المئوية التثبيط بهذه المركبات تتراوح بين (38.44-87.16(%
The coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are cal
... Show More1,3,4-oxadizole and pyrazole derivatives are very important scaffolds for medicinal chemistry. A literature survey revealed that they possess a wide spectrum of biological activities including anti-inflammatory and antitumor effects.
To describe the synthesis and evaluation of two classes of new niflumic acid (NF) derivatives, the 1,3,4-oxadizole derivatives (compounds 3 and (4A-E) and pyrazole derivatives (compounds 5 and 6), as EGFR tyrosine kinase inhibitors in silico and in vitro.
The designed compounds were synthesized using convent