In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
Foreign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi
... Show MoreThe utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.
... Show MoreThis research aims to examine the relationship between learning organization and behavior of work teams. The variable of the learning organization took four dimensions depending on the study (sudhartna & Li, 2004): Common cultural values , communication, knowledge transfer and the characteristics of workers. The behavior of teams was identified on the basis of realizing of the respondents of their organization to work as a team where the research relied concepts applied in the study (Hakim , 2005) , and chose to research the case of a service organization for the study and relied on four dimensions of coordination , cooperation , sharing of information , the performance of the team, and was a curriculum approach and des
... Show More