In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
In this study, the relationship between the bare soil temperature with respect to its salinity is presented, the bare soil feature is considered only by eliminating all other land features by classifying the site location by using the support vector machine algorithm, in the same time the salinity index that calculated from the spectral response from the satellite bands is calibrated using empirical salinity value calculated from field soil samples. A 2D probability density function is used to analyze the relationship between the temperature rising from the minimum temperature (from the sunrise time) due to the solar radiation duration tell the time of the satellite capturing the scene image and the calibrated salinity index is presented. T
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreIn light of the corona pandemic, educational institutions have moved to learning and teaching via the Internet and e-learning ,and this is considered a turning point in course of higher education in Iraq in particular and education in general, which generated a great challenge for educational institutions to achieve the highest possible levels in practices and processes to reach the highest quality of their outputs from graduate students to the labor market that auditing performance by adopting e-learning standards is one of the effective tools that help the management of educational institutions by providing information on the ex
... Show MoreDue to the spread of “Deepfake” in our society and the impact of this phenomenon on politicians, celebrities, and the privacy of individuals in particular, as well as, on the other hand, its impact on the electoral process as well as financial fraud, all these reasons prompted us to present a research paper dealing with this phenomenon. This paper presents a comprehensive review of Deepfake, how it is created, and who has produced it. This paper can be used as a reference and information source for the methods used to limit deepfake by detecting forgeries and minimizing its impact on society by preventing it. This paper reviews the results of much research in the field of deepfake, as well as the advantages of each method, a
... Show MoreImage classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show MoreOnline learning is not a new concept in education, but it has been used extensively since the Covid-19 pandemic and is still in use now. Every student in the world has gone through this learning process from the primary to the college levels, with both teachers and students conducting instruction online (at home). The goal of the current study is to investigate college students’ attitudes towards online learning. To accomplish the goal of the current study, a questionnaire is developed and adjusted before being administered to a sample of 155 students. Additionally, validity and reliability are attained. Some conclusions, recommendations, and suggestions are offered in the end.
The current research aims to examine the effect of the rapid learning method in developing creative thinking among second-grade female students in the subject of history. Thus, the researcher has adopted an experimental design of two groups to suit the nature of the research. The sample of the study consists of (36) randomly selected students from Al-Shafaq Secondary School for Women, which are divided randomly into two groups. The first group represents the experimental; it includes (31) students who studied the subject of history using the quick learning method. The second group, on the other hand, is the control group, which consists of (32) students, who studied the same subject using the traditional way. Before starting with the exp
... Show MoreUranium concentration and the annual committed effective dose in some selected medicinal plants commonly used in Iraq have been determined using fission tracks technique etch in twelve medical plants samples using CR-39 track detector. The results show that the uranium concentration ranged from 0.044±0.021 ppm in Thyme sample to 0.2±0.03 ppm in Black Pepper and Cardamom samples with an average value of 0.14 ±0.0 4ppm. The average annual effective dose due to ingestion of uranium radionuclide was 13.77x10 -5 mSv/y, which is below the world average annual committed effective dose of 0.3 mSv/y for ingestion of natural radionuclides.
Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst
Computational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show More