In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
This research has been applied on 100 children (age 4 – 6 years) from three kindergartens distributed on basis of 43 children from the college of Education for women kindergarten (A) , 27 children from the governmental Al- Mustafa kindergarten (B) , and 30 children from the private Al – Baraom kindergarten (C) . Details concerning their school meals, already prepared at home , have been analyzed according to their dietary components taken from the tables of the dietary values .The statistical analysis results have shown no significant difference (p< 0.01) in the intake of energy , protein and thiamin between the children of A and C kindergartens while these children have significantly recieved higher amounts of the above nutrien
... Show More
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
The CO2-Assisted Gravity Drainage process (GAGD) has been introduced to become one of the mostinfluential process to enhance oil recovery (EOR) methods in both secondary and tertiary recovery through immiscibleand miscible mode. Its advantages came from the ability of this process to provide gravity-stable oil displacement forenhancing oil recovery. Vertical injectors for CO2 gas have been placed at the crest of the pay zone to form a gas capwhich drain the oil towards the horizontal producing oil wells located above the oil-water-contact. The advantage ofhorizontal well is to provide big drainage area and small pressure drawdown due to the long penetration. Manysimulation and physical models of CO2-AGD process have been implemented
... Show MoreObjective : The study was carried out to construct an initial assessment documentation tool for nursing
recording system in Coronary Care Unit.
Methodology : A descriptive, purposive sample of (65) nurses was selected from CCU of main
teaching hospitals (Al Karama, Al Kindy, Al Kadimia, Al Yarmmok, Baghdad teaching hospital, Ibn
Al Naffis hospital) and Ibn-Al betar hospital in Baghdad city from the 15th of April 2004 to the 15th of
April 2006.
The instrument was constructed and comprised of two sections: section one included the
nurses' demographic characteristic; section two was the initial assessment documentation tool that
contained (2) parts including: General information form and the initial assessment form.