In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
Half of the oil production of the worldwide is a result of the water flooding project. But the main concern of this process is mobility control of the injected fluid, because the unfavorable mobility ratio leads to fingering effect. Adding polymer to the injection water increase the water viscosity, therefore, the displacement will be more stable and have a greater sweep efficiency.
Using of polymer flooding has received more attention these days. Polymer has great potential in the Middle East region, especially in reservoir with high temperature and salinity.
The main objective of this work is to show the effect of shear rate, salinity, temperature, polymer concentration on polymer v
... Show MoreSignal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreBased on the diazotization reaction of 4-aminoacetophenone with sodium nitrite in acid medium to form diazonium salt, which was coupled with Methyldopa to form a violet reddish soluble azo dye with maximum absorbance at 560 nm,a batch procedure had been developed for the estamination of Methyldopa. Under optimum experimental parameters affecting on the development and stability of the colored product, Beer´s law obeyed in the range (0.5-45) ?g.ml-1 with a correlation coefficient (0.9979).The proposed method was successfully applied to the determination of Methyldopa in either pure form and in commercial brands of pharmaceuticals, no interference was observed from common excipients in the formulations. The analytical results obtained by app
... Show MoreThis paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on th
... Show MoreAlgorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.
This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show MoreIn this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).