In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
النظام السياسي اليمني : دراسة في المتغيرات الداخلية
This study aims to study argumentation in political debates by figuring out the logical fallacies employed in the debates of Clinton and Trump, the presidential nominees of the 2016 elections, and Biden and Trump, the leading contenders in the 2020 United States presidential election. The study attempts to answer the questions: (1) What relevance fallacies are adopted in the debate between Trump and Clinton? (2) What rhetorical devices are used to influence the audience and gain voters besides fallacies in the debates selected? The study analyses two texts from two arguments using Damer's (2009) taxonomy of relevance fallacy and rhetorical devices based on Perrine’s (1969) model of communication and interpersonal rhetoric to answe
... Show MorePolycystic ovary syndrome (PCOS) is a significant cause of infertility due to ovulation dysfunction in women of childbearing age. Although the pathogenesis of PCOS is still not clear, many studies have shown that many factors within the ovary promote infection. With this syndrome, the disruption of the natural monthly ovulation process causes an imbalance in the body's hormones, and the high level of insulin in the body and the blood sugar imbalance leads to the occurrence of hyperandrogenism, which is the main factor for the occurrence of pathogens, in addition to genetic factors, if any. This study aims to identify this disease and its most important causes, symptoms, and modern treatments to prevent and get rid of it. Polycystic
... Show MoreThe paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.
This study examines the structural performance of concrete-encased pultruded Glass Fiber Reinforced Polymer (GFRP) I-sections with shear connections. It specifically focuses on how different parameters affect the latter’s ductility, flexural strength, and load-carrying capacity. The key variables studied include various shear connector types, spacing, and geometries, as well as the compressive strength of concrete and the properties of GFRP. The finite element modeling and experimental validation show that the shear connectors significantly improve the ductility, ultimate capacity, and load transmission efficiency. The present review emphasizes that the shear connectors greatly enhance the structural performance when they are prop
... Show MoreIn this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better
This research was aimed to study the osmotic efficiency of the draw solutions and the factors affecting the performance of forward osmosis process : The draw solutions used were magnesium sulfate hydrate (MgSO4.7H2O) pojtassium chloride (KCL), calcium chloride (CaCl2) and ammonium bicarbonate (NH4HCO3). It was found that water flux increases with increasing draw solution concentration, and feed solution flow rate and decreases with increasing draw solution flow rate and feed solution concentration. And also found that the efficiency of the draw solutions is in the following order:
CaCl2> KCI > NH4HCO3> MgSO4.7H