In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial lung CT-scans into two groups (COVID-19 and NonCOVID-19) had been proposed. A dataset used is 960 slices of CT scan collected from Iraqi patients /Ibn Al-Nafis teaching hospital. The performance metrics are used in this study (accuracy, recall, precision, and F1 scores). The results indicate that the proposed approach generated a high-quality model for the collected dataset, with an overall accuracy of 98.95% and an overall recall of 97 %.
Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses.
... Show MoreObjective: The study aimed to assess Leucine-rich alpha-2-glycoprotein-1 biomarker serum level in hospitalized COVID-19 patients. Methods: The case control study from multi-centers in Baghdad included 45 adult patients (19 females and 26 males) with COVID-19, diagnosed with a positive real-time reverse transcription polymerase chain reaction and excluded negative RT-PCR for COVID-19 and comorbidity conditions. Second group, was 43 control (20 females and 23 males). Results: This study found a decrease Leucine-rich alpha-2-glycoprotein-1 biomarker serum level in these patients and a significant difference in D. dimer, neutrophil count, lymphocyte count, and the neutrophil-lymphocyte ratio between the patients and controls at a P valu
... Show MoreAbstract
This study aims to identify the degree to which the first cycle teachers use different feedback patterns in the E-learning system, to identify the differences in the degree of use according to specialization, teaching experience, and in-service training in the field of classroom assessment as well as the interaction between them. The study sample consisted of (350) female teachers of the first cycle in the governmental schools in Muscat Governorate for the academic year 2020/2021. The study used a questionnaire containing four different feedback patterns: reinforcement, informative, corrective, and interpretive feedback. The psychometric properties of the questionnaire were verified in terms of validity
... Show MoreThe ongoing COVID‐19 pandemic caused by SARS‐CoV‐2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human‐to‐human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to d
This work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved