A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show MoreMost Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show MoreAn encryption system needs unpredictability and randomness property to maintain information security during transmission and storage. Although chaotic maps have this property, they have limitations such as low Lyapunov exponents, low sensitivity and limited chaotic regions. The paper presents a new improved skewed tent map to address these problems. The improved skew tent map (ISTM) increases the sensitivity to initial conditions and control parameters. It has uniform distribution of output sequences. The programs for ISTM chaotic behavior were implemented in MATLAB R2023b. The novel ISTM produces a binary sequence, with high degree of complexity and good randomness properties. The performance of the ISTM generator shows effective s
... Show MoreIn this work, a deep computational study has been conducted to assign several qualities for the graph . Furthermore, determine the amount of the dihedral subgroups in the Held simple group He through utilizing the attributes of gamma.
The study aims to design an electronic puppet educational theater by Camtasia studio and identify the effectiveness in learning some of the artistic gymnastics skills for first grade, the research curriculum is experimental by designing two equal groups, and the research sample first grade students are distributed among 4 grade, and by the pumpkin determines two divisions (15 from each) representing the experimental group and control group, the main experiment conducted for 8 weeks by two educational units per week after which the post-tests were conducted, SPSS was used to process the results, and it was found that the electronic puppet educational theater contributed by making the learning process enjoyable and interesting and meeting the
... Show MoreThe research aims to verify the role of the Human Resources Strategic Management (HRSM) in enhancing the strategic success factors for talent (SSFT) in the General Tourism Authority by distributing a questionnaire consisting of (36) paragraphs on an intentional sample represented by the higher departments as it reached (50) and the sample valid for testing was (44) Person and to test the relationships between the two research variables, the researchers used statistical methods represented by (Bartlett test / mean / simple regression coefficient / difference coefficient, alpha- cronbachAch, confirmatory factor Analysis ) through the statistical program (SPSS v.23 & AMOS v.23). In enhancing the factors of success for talent management in the
... Show MoreThe research aims to identify: 1-Designing a test to measure the movement compatibility of the eye and the leg for the students of the Faculty of Physical Education and Sports Sciences, Samarra University. 2-Codification (setting scores and standard levels) for the results of the motor compatibility test for the eye and the leg for students of the Faculty of Physical Education and Sports Sciences, Samarra University. The researchers reached the some following conclusions: 1-A test to measure the movement compatibility of the eye and the leg for the students of the Faculty of Physical Education and Sports Sciences. 2-There is a discrepancy in the standard levels of the research sample.
The present paper discusses one of the most important Russian linguistic features of Arabic origin Russian lexes denoting some religious worship or some political and social positions like Qadi, Wally, Sultan, Alam, Ruler, Caliph, Amir, Fakih, Mufti, Sharif, Ayatollah, Sheikh.. etc. A lexical analysis of the two of the most efficient and most used words of Arabic origin Russian lexes that are “Caliph and Sheikh” is considered in the present study. The lexicographic analysis of these words makes it possible to identify controversial issues related to their etymology and semantic development.
The study is conducted by the use of the modern Russian and Arabic dictionary, specifically, (Intermediate lexicon Dictionary
... Show More