A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe agricultural sector suffers from many risks and natural disasters, such as droughts and heavy rains that cause floods, as well as hail and agricultural pests, etc., that threaten agricultural activity and reduce it, which leads to the failure of farmers and peasants for fear of being subjected to continuous losses. Nevertheless, we notice almost complete reluctance to move towards agricultural insurance, due to the dependence of farmers on the government, which adopts the principle of compensation instead of agricultural insurance when natural disasters happen despite the difficulties and financial hardship as well as the suspicion of corruption that haunt the compensation process and this represents the most important problem for resea
... Show MoreThe study showed flow rates and the interaction between the settlements served by applying the model of gravity theory to measure depending on the number of the population between city Najaf and the rest of the other settlements served and using three functions of disability, time and cost, as recorded an increase in the interaction index with some settlements like them Kufa, Abbasid and Manathira, while the indicator contrast was in other settlements, either when the application of the gravity model depending on trips and socio-economic characteristics accuracy rate was more pronounced.
PMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
The world's renewable energy sources have taken on great importance, for its cleanness and its environmental effects as well as being a renewable source, Increased demand for fossil energy sources is also causing global warming and climate change. Iraq is an appropriate area for renewable energy This study shows that renewable alternative energy has not been used sufficiently enough at present. But this energy can play an important role in the future of renewable energy in Iraq. This research aims to study the renewable energy in Iraq (solar energy) and it is appropriate to develop this alternative energy for crude oil, which is characterized by the use of the most appropriate and less economical and more environmentally friendly. Solar
... Show More