A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreThe availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a
... Show Moreأن تكوين المودود شكل (1) فى منطقة الدراسة يعتبر من التكاوين المهمة فى منطقة الخليج العربى وايران . لقد تم وصف هذا التكوين لاول مرة من قبل (1) فى المقطع المثالى فى بئر ( دخان -1 ) والذى قسمة الى قسمين رئيسين . القسم الاعلى يتكون من حجر جيرى حامل للدمالق اما القسم الاسفل فهو صلصالى .
: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show MoreIn this work, a single pile is physically modeled and embedded in an upper liquefiable loose sand layer overlying a non-liquefiable dense layer. A laminar soil container is adopted to simulate the coupled static-dynamic loading pile response during earthquake motions: Ali Algharbi, Halabjah, El-Centro, and Kobe earthquakes. During seismic events with combined loading, the rotation along the pile, the lateral and vertical displacements at the pile head as well as the pore pressure ratio in loose sandy soil were assessed. According to the experimental findings, combined loading that ranged from 50 to 100% of axial load would alter the pile reaction by reducing the pile head peak ground acceleration, rotation of the pile, and lateral displacem
... Show MoreIn present study 74 specimens of urine were collected from patients suffering from urinary tract infections.Fifty (67.56%) isolates were identified as Escherichia coli. 78% of isolates were identified as extendedspectrum beta lactamases (ESBL) producer. Antibiotic susceptibility t est was done and ceftazidime wasselected to complete this study by implying stress at sub-MIC on isolate harbor high number of resistancegenes (N11) and compared with sensitive isolate (S). Only four β-lactamase coding genes were detected;blaTEM, blaPER, blaVIM and blaCTX-M-2 and N11 had blaTEM, blaPER, and blaVIM. It was found that the resistantisolate did not form biofilm when compared with the sensitive one, which formed moderate biofilm. Inaddition, ceftazidi
... Show MoreThe current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method). Qualitative and quantitative determinations of epicatechin in two tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and then quantified epicatechin in all ethyl acetate fractions of two tea samples. This research revealed the existence of epica
... Show MoreChannel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreA school uniform is an international educational phenomenon , and that each
state through its pedagogical educational system imposes uniform hopping for goals
and visions that complement their theoretical framework, because of its extreme
importance that benefits the school administration, parents and pupils . The carried
out researches unanimous in various parts of the world on its importance,
including : the achievement of equality between students and strengthen their
affiliation to the school as well as the good appearance , and reduces competition in
the clothing and the maintenance of order in the classroom and school as well as
increases the seriousness and focus of students to study and make them known bot