A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Optical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using M
... Show MoreThree-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show MoreGlobal Navigation Satellite System (GNSS) is considered to be one of the most crucial tools for different applications, i.e. transportation, geographic information systems, mobile satellite communications, and others. Without a doubt, the GNSS has been widely employed for different scientific applications, such as land surveying, mapping, and precise monitoring for huge structures, etc. Thus, an intense competitive has appeared between companies which produce geodetic GNSS hardware devices to meet all the requirements of GNSS communities. This study aims to assess the performance of different GNSS receivers to provide reliable positions. In this study, three different receivers, which are produced by different manufactur
... Show MoreGlobal Navigation Satellite System (GNSS) is considered to be one of the most crucial tools for different applications, i.e. transportation, geographic information systems, mobile satellite communications, and others. Without a doubt, the GNSS has been widely employed for different scientific applications, such as land surveying, mapping, and precise monitoring for huge structures, etc. Thus, an intense competitive has appeared between companies which produce geodetic GNSS hardware devices to meet all the requirements of GNSS communities. This study aims to assess the performance of different GNSS receivers to provide reliable positions. In this study, three different receivers, which are produced by different manufacturers, were fi
... Show MoreProsthetic is an artificial tool that replaces a member of the human frame that is absent because of ailment, damage, or distortion. The current research activities in Iraq draw interest to the upper limb discipline because of the growth in the number of amputees. Thus, it becomes necessary to increase researches in this subject to help in reducing the struggling patients. This paper describes the design and development of a prosthesis for people able and wear them from persons who have amputation in the hands. This design is composed of a hand with five fingers moving by means of a gearbox ism mechanism. The design of this artificial hand has 5 degrees of freedom. This artificial hand works based on the principle of &n
... Show MoreAbstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
Influence of combined square nozzle with helical tape inserted in a constant heat flux tube on heat transfer enhancement for turbulent airflow for Reynolds number ranging from 7000 to 14500 were investigated experimentally. Three different pitch ratios for square nozzle (PR = 5.8, 7.7 and 11.6) according to three different numbers of square nozzle (N = 3, 4 and 5) and constant pitch ratios for helical tape were used. The results observed that the Nusselt number and friction factor for combination with winglets were found to be up to 33.8 % and 21.4 %, respectively higher than nozzle alone for pitch ratio PR=5.8. The maximum value of thermal performance for using combination with winglets was about 1.351 for pitch ratio= 5.8. Nusselt numb
... Show More