A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
As COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
Background: COVID-19 is a disease that started in Wuhan/China in late 2019 and continued through 2020 worldwide. Scientists worldwide continue to research to find vaccines, treatments, and medication for this disease. Studies also conenue to find the pathogenicity and epidemiology mechanisms. Materials and Methods: In this work, we analyzed cases obtained from Alshifaa center in Baghdad/Iraq for 23/2/2020-31/5/2020 with total instances of 797, positive cases of 393, and death cases of 30. Results: Results showed that the highest infection cases were among people aged between 41-45. Also, it was found that males' number of cases was more than females. In contrast, death cases were significantly higher in males than females. It was not
... Show MoreComputational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show MoreAbstract
Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.
Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e
... Show MoreIn this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreResearch in the field of English language as a foreign language (EFL) has been consistently highlighted the need for communicative competence skills among students. Accompanied by the validated positive impact of technologies on students’ skills’, this study aims to explore the strategies used by EFL students in enhancing their communicative competence using digital platforms and identify the factors of developing communicative competence using digital platforms (linguistic factors, environmental factors, psychological factors, and university-related factors). The mixed-method research design was utilized to obtain data from Iraqi undergraduate EFL students. The study was conducted in the Iraqi University in Baghdad Iraq. EFL undergradu
... Show MoreProductivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.
In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe
... Show MorePrenatal markers are commonly used in practice to screen for some foetal abnormalities. They can be biochemical or ultrasonic markers in addition to the newly used cell free Deoxyribonucleic Acid (DNA) estimation. This review aimed to illustrate the applications of the prenatal screening, and the reliability of these tests in detecting the presence of abnormal chromosomes such as trisomy-21, trisomy-18, and trisomy-13 in addition to neural tube defects. Prenatal markers can also be used in the anticipation of some obstetrical complications depending on levels of these markers in the mother’s circulation. In the developed countries, prenatal screening tests are regularly used during antenatal care period. Neural tube defects, numer
... Show MoreDesigning machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
Abstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show More