A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Abstract
Itraconazole is a triazole antifungal given orally for the treatment of oropharyngeal and vulvovaginal candidiasis, for systemic infections including aspergillosis, candidiasis, and for the prophylaxis of fungal infections in immunocompromised patients.
The study aimed to formulate a practical water-insoluble Itraconazole, with insufficient bioavailability as nanosuspension to increase aqueous solubility and improve its dissolution and oral bioavailability.
Itraconazole nanosuspension was produced by a
... Show MoreIn general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreThe world is currently facing a medical crisis. The epidemic has affected millions of people around the world since its appearance. This situation needs an urgent solution. Most countries have used different solutions to stop the spread of the epidemic. The World Health Organization has imposed some rules that people should adhere. The rules are such, wearing masks, quarantining infected people and social distancing. Social distancing is one of the most important solutions that have given good results to confront the emerging virus. Several systems have been developed that use artificial intelligence and deep learning to track social distancing. In this study, a system based on deep learning has been proposed. The system includes monitor
... Show MoreSansevieriatrifasciata was studied as a potential biosorbent for chromium, copper and nickel removal in batch process from electroplating and tannery effluents. Different parameters influencing the biosorption process such as pH, contact time, and amount of biosorbent were optimized while using the 80 mm sized particles of the biosorbent. As high as 91.3 % Ni and 92.7 % Cu were removed at pH of 6 and 4.5 respectively, while optimum Cr removal of 91.34 % from electroplating and 94.6 % from tannery effluents was found at pH 6.0 and 4.0 respectively. Pseudo second order model was found to best fit the kinetic data for all the metals as evidenced by their greater R2 values. FTIR characterization of biosorbent revealed the presence of carboxyl a
... Show MoreWind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller (HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization (PSO) have been applied and compared in order to identify the optimal
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl