The aim of this investigation is to determine how different weight percentages of alumina nanoparticles, including 0.02, 0.04, and 0.06 percent wt, affect the physical characteristics of Poly Acrylamide (PAAM). Using a hot plate magnetic stirrer, 10 g of poly acrylamide powder was dissolved in 90 g of di-ionized distillate water for 4 hours to produce PAAM with a concentration of 0.11 g/ml. Four sections of the resulting solution, each with a volume of 20 ml, were created. Each solution was added independently with alumina nanoparticles in different ratios 0.0, 0.02, 0.04, and 0.06 to create four nano fluid solutions with different alumina nanoparticle contents based on each weight percent. The hand casting process for nanocomposites samples, which entailed pouring the prepared solution into an appropriate plastic mold, allowing it to cure for 24 hours, and then cutting the resulting thin film according to each test, was used to create the nano composited membranes. The tensile test was used to study tensile strength, Young's modulus, elongation, and toughness. Additionally, a test using Fourier transition infrared radiation (FTIR) was conducted to examine the chemical and physical connections between polyacrylamide and alumina nanoparticles. The morphology of the materials was examined using scan electron microscopy. The contact angles of samples were tested to limit the hydrophilicity behavior of these samples. To control the hydrophilicity behavior of these samples, the contact angles of the samples were evaluated. The results showed that including alumina nanoparticles into the PAAM matrix improves the mechanical characteristics of the resulting nanocomposites. Tensile strength increases from 1 GPa to 2.5 GPa with an increase in alumina nanoparticle content from 0 to 0.06 percent wt. For the same prior ratios, Young's modulus likewise increased, rising from 1.3 to 2 GPa. For the higher weight ratio of alumina nanoparticles (0.04 percent wt), toughness rises to 240 J/cm2. On the other hand, the addition of alumina nanoparticles increased the PAAM surface's contact angle from 55 degrees to 67 degrees, and it exhibited hydrophilic behavior
Bark fiber has high potential use for composite reinforcement in biocomposite material. The aim of this study is the mechanical properties of Bark fiber reinforced polester composite with varying fiber weight fraction (0% , 5% , 10% , 20%, 30% and 40%) hand lay-up technique which was used to prepare the composite , specimens for tensile , flexural and impact test according to the ASTM D638 , ASTMD790 , and Iso-179. The over all results showed that the composite is reinforced with Bark fiber at weight (10%) higher mechanical properties , and the composite showed improved mechanical (Flexural).
A critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nano
... Show MoreThis study compared in vitro the microleakage of a new low shrink silorane-based posterior composite (Filtek™ P90) and two methacrylate-based composites: a packable posterior composite (Filtek™ P60) and a nanofill composite (Filtek™ Supreme XT) through dye penetration test. Thirty sound human upper premolars were used in this study. Standardized class V cavities were prepared at the buccal surface of each tooth. The teeth were then divided into three groups of ten teeth each: (Group 1: restored with Filtek™ P90, Group 2: restored with Filtek™ P60, and Group 3: restored with Filtek™ Supreme XT). Each composite system was used according to the manufacturer's instructions with their corresponding adhesive systems. The teeth were th
... Show MoreIn this research, the study effect of additive titanium dioxide powder (TiO2) as a lone composite ( Ep+TiO2) and a mixture of (TiO2) and silicon oxide (SiO2), ( Ep+ TiO2+SiO2)as a hybrid composite on the mechanical and physical properties for epoxy coating. Thescompsiteswere prepared by (Hand Lay- the molding) method. The samples were tested for compressive strength, surface hardness, modulus of elasticity, thermal conductivity and diffusion coefficient, from the results obtained showed improvement in mechanical properties after adding ceramic powders, as the alone composite (EP+ TiO2) had the highest compressive strength ( 53.738 ) ᴍPa, the hybrid composite ( EP+TiO2 +SiO2 ) had the
... Show MoreIn this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThis paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It
... Show MoreThermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
The present research was conducted to synthesis Y-Zeolite by sol-gel technique using MWCNT (multiwalled carbon nanotubes) as crystallization medium to get a narrow range of particle size distribution with small average size compared with ordinary methods. The phase pattern, chemical structure, particle size, and surface area were detected by XRD, FTIR, BET and AFM, respectively. Results shown that the average size of Zeolite with and without using MWCNT were (92.39) nm and (55.17) nm respectively .Particle size range reduced from (150-55) nm to (130-30) nm. The surface area enhanced to be (558) m2/g with slightly large pore volume (0.231) km3/g was obtained. Meanwhile, degree of crystallization decrease
... Show More