In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum error remainder ( ) has been calculated to exhibit the reliability of the suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and reliable in getting approximate solutions to the problem.
This paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic fluid of the generalized Oldroyd-B model. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and shear stress fields in terms of the Fox H-function are obtained by using discrete Laplace transform. The effect of different parameter that controlled the motion and shear stress equations are studied through plotting using the MATHEMATICA-8 software.
A load flow program is developed using MATLAB and based on the Newton–Raphson method,which shows very fast and efficient rate of convergence as well as computationally the proposed method is very efficient and it requires less computer memory through the use of sparsing method and other methods in programming to accelerate the run speed to be near the real time.
The designed program computes the voltage magnitudes and phase angles at each bus of the network under steady–state operating conditions. It also computes the power flow and power losses for all equipment, including transformers and transmission lines taking into consideration the effects of off–nominal, tap and phase shift transformers, generators, shunt capacitors, sh
A novel analytical method is developed for the determination of azithromycin. The method utilizes continuous flow injection analysis to enhance the chemiluminescence system of luminol, H2O2, and Cr(III). The method demonstrated a linear dynamic range of 0.001–100 mmol L-1 with a high correlation coefficient (r) of 0.9978, and 0.001–150 mmol L-1 with a correlation coefficient (r) of 0.9769 for the chemiluminescence emission versus azithromycin concentration. The limit of detection (L.O.D.) of the method was found to be 18.725 ng.50 µL−1 based on the stepwise dilution method for the lowest concentration within the linear dynamic range of the calibration graph. The relative standard deviation (R.S.D. %) for n = 6 was less than 1.2%
... Show MoreOne of the main causes for concern is the widespread presence of pharmaceuticals in the environment, which may be harmful to living things. They are often referred to as emerging chemical pollutants in water bodies because they are either still unregulated or undergoing regulation. Pharmaceutical pollution of the environment may have detrimental effects on ecosystem viability, human health, and water quality. In this study, the amount of remaining pharmaceutical compounds in environmental waters was determined using a straightforward review. Pharmaceutical production and consumption have increased due to medical advancements, leading to concerns about their environmental impact and potential harm to living things due to their increa
... Show MoreAbstract:
Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .
power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.
<
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreIn this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.