Preferred Language
Articles
/
bsj-7310
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of fractional differential equations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
The Influence of Magnetohydrodynamic Flow and Slip Condition on Generalized Burgers’ Fluid with Fractional Derivative
...Show More Authors

This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparing the Sequential Nonlinear least squared Method and Sequential robust M method to estimate the parameters of Two Dimensional sinusoidal signal model:
...Show More Authors

Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust  M method after their development through the use of sequential  approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Apr 04 2023
Journal Name
Results In Nonlinear Analysis
The fractional integrodifferential operator and its univalence and boundedness features according to Pre-Schwarzian derivative structure
...Show More Authors

Complex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
using collocation method for solving differential equations with time lag
...Show More Authors

in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach

View Publication Preview PDF
Publication Date
Sat Mar 30 2024
Journal Name
Iraqi Journal Of Science
On Certain Subclass of Meromorphic Multivalent Functions Associated with Fractional Calculus Operator
...Show More Authors

     In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class ,  is calculaed.

View Publication
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Pharmacokinetic Consideration to Formulate Sustained Release Drugs: Understanding the Controlled Drug Diffusion through the Body Compartment of the Systemic Circulation and Tissue Medium-A Caputo Model
...Show More Authors

The aim of this study is to provide an overview of various models to study drug diffusion for a sustained period into and within the human body. Emphasized the mathematical compartment models using fractional derivative (Caputo model) approach to investigate the change in sustained drug concentration in different compartments of the human body system through the oral route or the intravenous route. Law of mass action, first-order kinetics, and Fick's perfusion principle were used to develop mathematical compartment models representing sustained drug diffusion throughout the human body. To adequately predict the sustained drug diffusion into various compartments of the human body, consider fractional derivative (Caputo model) to investiga

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Partial Sums of Some Fractional Operators of Bounded Turning: Partial Sums of Some Fractional Operators
...Show More Authors

            In this paper, several conditions are put in order to compose the sequence of partial sums ,  and  of the fractional operators of analytic univalent functions ,  and   of bounded turning which are bounded turning too.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Analytical Solutions for Advanced Functional Differential Equations with Discontinuous Forcing Terms and Studying Their Dynamical Properties
...Show More Authors

This paper aims to find new analytical closed-forms to the  solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems
...Show More Authors

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref