Preferred Language
Articles
/
bsj-7310
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of fractional differential equations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Ranking Function to Solve a Fuzzy Multiple Objective Function
...Show More Authors

In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better

View Publication Preview PDF
Scopus (13)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weighted Residual Method for the System of Nonlinear Volterra Integral Equations of the Second Kind Using an Exponential Function
...Show More Authors

The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner,  Taylor manner and block- by- block(2, 3, 5).

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function
...Show More Authors

In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.

Mathematical Subject Classificat

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Faber Polynomial Coefficient Estimates for Subclass of Analytic Bi-Bazilevic Functions Defined by Differential Operator
...Show More Authors

In this work,  an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.

         In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.

 

View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Using Graph Mining Method in Analyzing Turkish Loanwords Derived from Arabic Language
...Show More Authors

Loanwords are the words transferred from one language to another, which become essential part of the borrowing language. The loanwords have come from the source language to the recipient language because of many reasons. Detecting these loanwords is complicated task due to that there are no standard specifications for transferring words between languages and hence low accuracy. This work tries to enhance this accuracy of detecting loanwords between Turkish and Arabic language as a case study. In this paper, the proposed system contributes to find all possible loanwords using any set of characters either alphabetically or randomly arranged. Then, it processes the distortion in the pronunciation, and solves the problem of the missing lette

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Novel Invasive Weed Optimization Algorithm (IWO) by Whale Optimization Algorithm(WOA) to solve Large Scale Optimization Problems
...Show More Authors

Abstract  

  In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invas

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using panel data in structural equations with application
...Show More Authors

The non static chain is always the problem of static analysis so that explained some of theoretical work, the properties of statistical regression analysis to lose when using strings in statistic and gives the slope of an imaginary relation under consideration.  chain is not static can become static by adding variable time to the multivariate analysis the factors to remove the general trend as well as variable placebo seasons to remove the effect of seasonal .convert the data to form exponential or logarithmic , in addition to using the difference repeated d is said in this case it integrated class d. Where the research contained in the theoretical side in parts in the first part the research methodology ha

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A New Two Derivative FSAL Runge-Kutta Method of Order Five in Four Stages
...Show More Authors

A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay
...Show More Authors

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF