The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and estimate the average fiber sizes. The membrane porosity percentage was measured using the dry-wet weight method. Also, a dynamic mechanical analyzer was used to determine the mechanical strength properties (tensile strength and Young's modulus) (DMA). The obtained results revealed that the polymer concentration and flow rate mainly affect the porosity and fiber size in ENMs. Increasing the polymer concentration improves the strength and flexibility, while the flow rate did not show a clear effect on the mechanical strength of ENMs. Both fibers collecting speed and spinning distance did not clearly impact the membrane morphology. ENMs flexibility significantly increased with increasing the collector speed and decreasing the spinning distance. Strong and flexible ENMs with small fibers can be fabricated using 10% PAN/DMF at a flow rate of 1 mL/h, collector speed of 140 rpm, and spinning distance of 13 cm.
The creation and characterisation of biodegradable blend films based on chitosan and polyvinyl alcohol for application in a range of packaging is described. The compatibility between the chitosan and PVA polymers was good. Composite films had a compact and homogeneous structure, according to the morphology analysis. The mechanical test result of PVA/CH at concentrations 5% showed, that The higher values of TS recorded in sample (p1, with 40 MPa) while the lower values appeared in sample (p9, with 22.09 MPa), the TS decreased gradually as the amount of PVA increased in blend film. While the blend film of pure Chitosan exhibits a poor mechanical strength which makes it a poor candidate for packaging but Blending CH with PVA together improved
... Show MoreAbstract
The extremes effects in parameters readings which are BOD (Biological Oxygen Demands) and DO(Dissolved Oxygen) can caused error estimating of the model’s parameters which used to determine the ratio of de oxygenation and re oxygenation of the dissolved oxygen(DO),then that will caused launch big amounts of the sewage pollution water to the rivers and it’s turn is effect in negative form on the ecosystem life and the different types of the water wealth.
As result of what mention before this research came to employees Streeter-Phleps model parameters estimation which are (Kd,Kr) the de oxygenation and re oxygenation ratios on respect
... Show MoreIncreasing the variety of products that are being designed with sculptured surfaces, efficient machining of these surfaces has become more important in many manufacturing industries. The objective of the present work is the investigation of milling parameters for the sculptured surfacesthat effecting of surface roughness during machining of Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The influence of the selected variables on the chosen characteristics have been accomplished using Taguchi design approach, also ANOVA had been utilized to evaluate the contributionsof each parameter on proc
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MorePolymer blended electrolytes of various concentrations of undoped PAN/PMMA (80/20, 75/25, 70/30, 65/35 and 60/40 wt%) and doped with lithium salts (LiCl, Li2SO4H2O, LiNO3, Li2CO3) at 20% wt have been prepared by the solution casting method using dimethylformamide as a solvent. The electrical conductivity has been carried out using an LCR meter. The results showed that the highest ionic conductivity was 2.80x10-7 (Ω.cm)-1 and 1.05x10-1 (Ω.cm)-1 at 100 kHz frequency at room temperature for undoped (60% PAN + 40% PMMA) and (80% PAN + 20% PMMA) doped with 20%wt Li2CO3 composite blends, respect
... Show MoreIn order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of sl
... Show MoreGlass Ionomer Cement (GIC) is one of the important dental temporary filing materials. The aim of this study is to evaluate the effect of adding 3, 5 and 7 wt. % of TiO2 microparticles to conventional GIC powder (Riva Self Cure) on mechanical properties and its effect on absorption and solubility processes. TiO2 particles additives improved compressive strength and biaxial flexural strength, where the compressive strength increased with increasing in the added ratio, while the highest value of the biaxial flexural strength was at 3 wt.%. The addition of TiO2 particles improved the surface Vickers microhardness values, with highest value at 5 wt. %. On other hand TiO2 addition im
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
The synthesis of new substituted cobalt Phthalocyanine (CoPc) was carried out using starting materials Naphthalene-1,4,5, tetracarbonic acid dianhydride (NDI) employing dry process method. Metal oxides (MO) alloy of (60%Ni3O4 40%-Co3O4 ) have been functionalized with multiwall carbon nanotubes (F-MWCNTs) to produce (F-MWCNTs/MO) nanocomposite (E2) and mixed with CoPc to yield (F-MWCNT/CoPc/MO) (E3). These composites were investigated using different analytical and spectrophotometric methods such as 1H-NMR (0-18 ppm), FTIR spectroscopy in the range of (400-4000cm-1), powder X-rays diffraction (PXRD, 2θ o = 10-80), Raman spectroscopy (0-4000 cm-1), and UV-Visib
... Show More