The aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystalline size has been noticed in the doped CdS than in the pure CdS. The particle size is within the range of 24-103 nm, according to SEM data from pure CdS and of the doped with Sn particles. The band gap's energy values, according to UV-Vis reflection spectroscopy were 3.06,2.61 ,2.63, 2.63, 2.66,2.69 eV for pure and doped with Sn 1%, 2%, 3%, 4%, 5% respectively. The grain size and roughness rate of pure CdS materials and doped with Sn are shown in AFM results 2.16,2.39,10.07,11.33, 12.47,18.56 nm and average diameter is 30.15, 11.71, 66.06, 48.27,82.011, 80.35 nm for pure and doped with tin 1%, 2%, 3%, 4%, 5% respectively.
Metal (III) and (II) coordination compounds of o- phenylenediamine, oxalic acid dihydrate and 8-hydroxyquinoline were synthesized for mixed ligand complexes and characterized using FT-IR, UV-Vis and mass spectra, atomic absorption, elemental analysis, electric conductance and magnetic susceptibility measurements. In addition, thermal behavior (TGA) of the metal complexes (1-6) showed good agreement with the formula suggested from the analytical data. The stoichiometric reaction between the metal (III) and (II) ions with three various ligands in molar ratio at aqueous ethyl alchol for (1:1:1:1) (M: O-PDA: OA: 8-HQ) [where M = Cr+3, Mn+2, Co+2, Ni+2. Cu+2 and Zn+2; O-PDA = O-Phenylenediamine; OA = Oxalic acid and 8-HQ = 8-Hydroxyquinoline]. R
... Show MoreThis study investigates the ionic conduction dependence on the size of alkaline cations in gel polymer electrolytes based on double iodide can enhance by incorporating a salt having a bulky cation.
... Show MoreWe described herein the synthesized and characterized of new bent and liner core compounds containing thiazolidin-4-one ring[XI-XIII] and [XIV-XVI] respectively. These compounds synthesized by sequence reactions starting from reaction resorcinol or hydroquinone with chloracetyl chloride to yield compounds [I] and [II] ,then the later compounds reactant with 4-hydroxybenzylaldehyde to product dialdehyde compounds [III] and [IV] .The Schiff bases compounds[V-VII] and [VIII-X] synthesized from reaction the compound [III] or [IV] with different aromatic amines, while the bent and liner core mesogens containing thiazolidin-4-one ring [XI-XIII] and [XIV-XVI] synthesized from reaction Schiff bases compounds[V-VII] or [VIII-X] with thioglycolic aci
... Show MoreSalicylaldehyde was react with 4-amino-2,3-dimethyl-1-phenyl-3-pyrazoline-5-on to produce the Schiff base ligand 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazoline-5-on (L). The prepared ligand was identified by Microelemental Analysis, and FT.IR, UV-Vis spectroscopic techniques. A new complexes of Fe(III),Co(II),Ni(II),Cu(II),Ce(III) and Pb(II) with mixed ligands of dithizone (DTZ) and Schiff base were prepared in aqueous ethanol with a 2:2:1 M:L:DTZ. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the ligands and complexes against two selected type of bacteria
... Show MoreObjective: This study involved the synthesis of new Schiff bases and 1,3-oxazepine derivatives from the baclofen drug and study the anticancer activities. Methods: Baclofen was initially reacted with aromatic aldehydes to create Schiff base derivatives (Ia–Ib), which were then closed in the next step using anhydrous acids to form oxazepine derivatives (IIa–IId). Results: The title compounds were synthesized successfully and identified using FT-IR, 1H NMR, and 13C NMR spectroscopy. Additionally, compound (IIc)’s (3-(4-chloro-phenyl)-4-[2-(4nitro-phenyl)-4,7-dioxo-4,7-dihydro-[1,3] oxazepin-3-yl]butyric acid) anticancer activity was assessed using MTT assay against FTC-133 (thyroid cancer) compared with WRL-68 (normal cell line). Discus
... Show MoreA new series of Schiff bases compounds , containing an azomethine linkage was synthesized and expected to be biologically active .The structures of these compounds were identified by IR , Uv/vis spectra , melting points and followed by T.L.C.The biological activity of these compounds was studied
Synthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
The reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with
... Show More