In the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cryptography protocol developed by Bennett and Brassard in the year 1984. In the present work, three ways BB84GA security systems have been demonstrated using trusted cryptographic techniques like an attribute-based authentication system, BB84 protocol, and genetic algorithm. Firstly, attribute-based authentication is used for identity-based access control and thereafter BB84 protocol is used for quantum key distribution between both parties and later the concept of genetic algorithm is applied for encryption/decryption of sensitive information across the private/public clouds. The proposed concept of involvement of hybrid algorithms is highly secure and technologically feasible. It is a unique algorithm which may be used to minimize the security threats over the clouds. The computed results are presented in the form of tables and graphs.
Image classification takes a large area in computer vision in term of quality or type or data sharing and so on Iraqi Anber Rice in they need this kind of work, where few in the field of computer science that deal with the types of Iraqi Anber rice, and because of the Anber Rice are grown and produced in Iraq only, and because of the importance of rice around the world and especially in Iraq. In this paper a proposed system distinguishes between the classes of Iraqi Anber Rice that Grown in different parts of Iraq, and have their own specifications for each class by using moment invariant and KNN algorithm. Iraqi Anber Rice that is more than Fiftieth class Cultivated and irrigated in different parts of Iraq, and because of the different
... Show MoreThis work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MoreIncreasing Mobile Device on Cloud Technology will dominate the various industries. Cloud has different data storage and data protecting techniques that based on Data User (DU) and industry’s needs. In this paper, an efficient way of managing user data sharing via Mobile Agent (MA) also called Mobile Proxy (MP) is proposed. The role of Mobile Agent Authorize User to collect the data from Cloud like Proxy and supply data to another Client due to this missing of cloud data is not possible. Instead of access data for all clients, the proxy hold required data and share the customer because of this network reliability, Network Bandwidth, User Congestion, Data Security. Also, this proposed scheme have more functionality like Cloud Authen
... Show MoreIn real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson†and the “Expectation-Maximization†techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i
... Show MoreObjective (s): To determine factors associated with the pregnancy complications (Maternal age, education,
obstetrical history, gravidity, birth space interval, and smoking).
Methodology: A cross-sectional study conducted at Al- washash & Bab-almoadham primary health care
centers. The sample was (non probability convenient sample) which included (550) pregnant women. The
study started from 1st April 2014 to 1
st of April 2015. The data was collected by direct interview using
special questionnaire to obtain socio-demographic information.
Results: the result shows that mean age of the subjects was 26.5± 4.39 years, 57.8% were housewives, the
sample included 103 premature uterine contractions, 98 pregnancy induce
Data hiding strategies have recently gained popularity in different fields; Digital watermark technology was developed for hiding copyright information in the image visually or invisibly. Today, 3D model technology has the potential to alter the field because it allows for the production of sophisticated structures and forms that were previously impossible to achieve. In this paper, a new watermarking method for the 3D model is presented. The proposed method is based on the geometrical and topology properties of the 3D model surface to increase the security. The geometrical properties are based on computing the mean curvature for a surface and topology based on the number of edges around each vertex, the vertices
... Show MoreFrequent data in weather records is essential for forecasting, numerical model development, and research, but data recording interruptions may occur for various reasons. So, this study aims to find a way to treat these missing data and know their accuracy by comparing them with the original data values. The mean method was used to treat daily and monthly missing temperature data. The results show that treating the monthly temperature data for the stations (Baghdad, Hilla, Basra, Nasiriya, and Samawa) in Iraq for all periods (1980-2020), the percentage for matching between the original and the treating values did not exceed (80%). So, the period was divided into four periods. It was noted that most of the congruence values increased, re
... Show MoreThe past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio
... Show MoreThe effectiveness of detecting and matching of image features using multiple views of a specified scene using dynamic scene analysis is considered to be a critical first step for many applications in computer vision image processing. The Scale invariant feature transform (SIFT) can be applied very successfully of typical images captured by a digital camera.
In this paper, firstly the SIFT and its variants are systematically analyzed. Then, the performances are evaluated in many situations: change in rotation, change in blurs, change in scale and change in illumination. The outcome results show that each algorithm has its advantages when compared with other algorithms
Stemming is a pre-processing step in Text mining applications as well as it is very important in most of the Information Retrieval systems. The goal of stemming is to reduce different grammatical forms of a word and sometimes derivationally related forms of a word to a common base (root or stem) form like reducing noun, adjective, verb, adverb etc. to its base form. The stem needs not to be identical to the morphological root of the word; it is usually sufficient that related words map to the same stem, even if this stem is not in itself a valid root. As in other languages; there is a need for an effective stemming algorithm for the indexing and retrieval of Arabic documents while the Arabic stemming algorithms are not widely available.
... Show More