Neural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved to be a ready source for use in experiments as a model for neurological disorders.
From 211 urine samples, Gram negative bacteria were isolated from only 61 urine samples with isolation percentage 28.9%. Escherichia coli were isolated percentage 70.49% while Klebsiella pneumoniae and Psendomonas aeruginosa were 8.19% and 6.55%, respectively.Proteus spp. Were isolated from 9 (14.75%), P. mirablis and P. vulgaris were isolates percentage 11.47% and 3.27%, respectively. Uroepithelial Cell Adhesin (UCA) fimbriae expression by P.mirabilis isolates was detected by the high capacity to adhesion to human uroepithetial cells, the isolate p.mirabilis U7 was adhesion to human uroepithelial cells mean no.30.2 bacteria/cell when grown on luria broth at 37C for 24h, but then grown it’s on luria agar at 37C for 24h the adhesion
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreArtificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network. The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je
... Show MoreWater samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting
(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro expe
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.