Metal contents in vegetables are interesting because of issues related to food safety and potential health risks. The availability of these metals in the human body may perform many biochemical functions and some of them linked with various diseases at high levels. The current study aimed to evaluate the concentration of various metals in common local consumed vegetables using ICP-MS. The concentrations of metals in vegetables of tarragon, Bay laurel, dill, Syrian mesquite, vine leaves, thymes, arugula, basil, common purslane and parsley of this study were found to be in the range of, 76-778 for Al, 10-333 for B, 4-119 for Ba, 2812-24645 for Ca, 0.1-0.32 for Co, 201-464 for Fe, 3661-46400 for K, 0.31–1.53 for Li, 860-14330 for Mg, 16.20-71.5 for Mn, 612-4725 for Na and 15.8-46 µg g-1 for Zn. The results revealed that the concentration of Al, B except in Syrian mesquite, Ba, Ca, Fe, K, Mg and Mn in all analysed vegetables is higher than the recommended value, Li is well-within the safe limit, and Co, Na except in dill, arugula and common purslane, Zn are lower than the recommended intake of these elements. From health point of view, the HQ values for Al, Fe (for all vegetables) and Ba (in dill, vine leaves, thymes, arugula, basil, common purslane and parsley) were higher than one, indicating potential non-cancer health risk due to exposure to these metals. Furthermore, the HI value for all vegetables was higher than one, indicating potential non-cancer health risk due to long-term exposure to these metals.
Infection of the gastric mucosa with Helicobacter pylori is strongly associated with chronic gastritis, peptic ulcer and gastric cancer. Helicobacter pylori virulence factors include a variety of proteins that are involved in its pathogenesis, such as VacA and CagA. Another group of virulence factors is clearly important for colonization of H.pylori in the gastric mucosa. These include urease, motility factors (flagellin), and Superoxide dismutase (SOD). Because of this organism's microaerophilic nature and the increased levels of reactive oxygen in the infected host, we expect that other factors involved in the response to oxidative stress are likely to be required for virulence. Superoxide dismutase is a near
... Show MoreThis work was conducted to determine the volumetric mass transfer coefficient (Ky.a) infixed bed adsorption using hexane-benzene mixture by adsorption onto a fixed bed of white silica gel. Benzene concentration was measured by gas chromatography. The effect of feed flow rate and initial concentration of benzene in hexane-benzene mixture on the volumetric mass transfer coefficient and on the adsorption capacity of silica gel was investigated.
In general, the volumetric mass transfer coefficient increases with increasing hexane flow rate, and with increasing initial concentration of benzene in the mixture. The ultimate value of (Ky.a) was at 53 ml/min of hexane flow rate with benzene initial concentration of (6.53 wt. %), and it wa
... Show MoreA sensitive spectrofluorimetric method for the determination of glibenclamide in its tablet formulations has been proposed. The method is based on the dissolving of glibenclamide in absolute ethanol and measuring the native fluorescence at 354 nm after excitation at 302 nm. Beers law is obeyed in the concentration of 1.4 to 10 µg.ml-1 of glibenclamide with a limit of detection (LD) of 0.067 µg.ml-1 and a standard deviation of 0.614. The range percent recoveries (N=3) is 94 - 103.
A simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.
A UV-Vis spectrophotometry method was developed for the determination of metoclopramide hydrochloride in pure and several pharmaceutical preparations, such as Permosan tablets, Meclodin syrups, and Plasil ampoules. The method is based on the diazotization reaction of metoclopramide hydrochloride with sodium nitrate and hydrochloric acid to yield the diazonium salt, which is then reacted with 3,5-dimethyl phenol in the presence of sodium hydroxide to form a yellow azo dye. Calibration curves were linear in the range from 0.3 to 6.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification were determined and found to be 0.18 and 0.61 µg/mL, respectively. Accuracy and precision were also determined b
... Show MoreThe research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical lo
... Show MoreA rapid high sensitive and inexpensive economic method has been developed for the Determination of phenoxazine by using molecular spectrophotometry. The method is based on the oxidation of phenoxazine by potassium (meta)periodate in acidic medium. The oxidation conditions were selected to enhance the sensitivity and the stability of the pink colored species which shows an absorption maximum at 530 nm. The Beer’s law was obeyed for phenoxazine concentration range from 1 to 6 µg mL-1 with 0.003 µg mL-1 detection limit and provided variation coefficients between 0.4 to 1.7 %. This method was successfully applied for the determination of phenoxazine in aqueous samples
Coagulation is the most important process in drinking water treatment. Alum coagulant increases the aluminum residuals, which have been linked in many studies to Alzheimer's disease. Therefore, it is very important to use it with the very optimal dose. In this paper, four sets of experiments were done to determine the relationship between raw water characteristics: turbidity, pH, alkalinity, temperature, and optimum doses of alum [ .14 O] to form a mathematical equation that could replace the need for jar test experiments. The experiments were performed under different conditions and under different seasonal circumstances. The optimal dose in every set was determined, and used to build a gene expression model (GEP). The models were co
... Show More