Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and overlapping kitchen utensils from internet were used as base benchmark objects. The evaluation and training/validation sets are set at 20% and 80% respectively. This project evaluated the performance of these techniques and analyzed their strengths and speeds based on accuracy, precision and F1 score. The analysis results in this project concluded that the YOLOv5 produces accurate bounding boxes whereas the Faster R-CNN detects more objects. In an identical testing environment, YOLOv5 shows the better performance than Faster R-CNN algorithm. After running in the same environment, this project gained the accuracy of 0.8912(89.12%) for YOLOv5 and 0.8392 (83.92%) for Faster R-CNN, while the loss value was 0.1852 for YOLOv5 and 0.2166 for Faster R-CNN. The comparison of these two methods is most current and never been applied in overlapping objects, especially kitchen utensils.
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreWill address this research interaction and coordination between fiscal and monetary policies and the impact of this interaction and coordination on economic stability and growth، and how the financial implications of monetary policy may stimulate action monetary policy and treatment side effects and the nature of responsiveness and bounce between procedures both two policies and their impact on the balance of overall economic and explained in the folds of searchjustifications coordination and the extent necessary in order to address the imbalances in economic activity through twinning actions of monetary and fiscal، has embodied this coordination and interaction between policies and their impact m
... Show MoreMost of the texts of Islamic law provide for the payment of damage and the denial of the human ... Damage of all kinds of material and moral, which is in the harm that affects the human being in himself or his offer or money or other affairs respected by Sharia. A person can defend himself, his mind, his religion, his offer and his money (the five imperatives) as much as he can. Islam rejects violence directed without a legitimate right and does not endorse aggression against others. Violence has been defined in language as a lack of compassion or against it or is a reprimand, bashing, and the blame ... It is in psychology: human behavior tainted by cruelty, oppression, and aggression, and is defined politically: it is deliberate civil d
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreIn this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
This study focused on two areas in AL-Najaf city, AL-Ruhbah and Al-Haydariyah regions because of the importance and widespread use of groundwater in these areas. The two areas were compared quantitatively and qualitatively. For the quantitative approach, the GMS software was used in conjunction with the GIS software to simulate the groundwater flow behavior. The solid model for both areas was created, the geological formation was determined, and the hydraulic properties were identified using GMS software. To test the quantity of groundwater in both areas, the wells have been redistributed to a distance of 2000 m between them, and a period of 1000 days was chosen. When a discharge of 10 l/s and operation times of 4, 8, an
... Show MorePurpose: The research seeks to develop the implications of intellectual human capital, and social capital in business organizations, and will be accomplished on three levels, the first level (the level of description) to identify, diagnose and display content philosophical Strategic Human Resource Management at the thought of modern administrative represented by human capital and Ras social capital. The second level (level of analysis) and the analysis of the extent of the impact of alignment between human capital, and social capital in the organizational strength of the organizations. The third level (Level predict) the formulation of a plan to strengthen the organizational strength in business organizations and to develop speci
... Show More