Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and overlapping kitchen utensils from internet were used as base benchmark objects. The evaluation and training/validation sets are set at 20% and 80% respectively. This project evaluated the performance of these techniques and analyzed their strengths and speeds based on accuracy, precision and F1 score. The analysis results in this project concluded that the YOLOv5 produces accurate bounding boxes whereas the Faster R-CNN detects more objects. In an identical testing environment, YOLOv5 shows the better performance than Faster R-CNN algorithm. After running in the same environment, this project gained the accuracy of 0.8912(89.12%) for YOLOv5 and 0.8392 (83.92%) for Faster R-CNN, while the loss value was 0.1852 for YOLOv5 and 0.2166 for Faster R-CNN. The comparison of these two methods is most current and never been applied in overlapping objects, especially kitchen utensils.
This research aims to know the impact of leadership integrity as explanatory variable including its dimensions (courage, asceticism, justice, rationality, and humanity) on organizational conflict as responding variable. This research depended on the descriptive- constructive approach through the responses of a sample of (79) employees from (Real Estate Office of The State) in Al-Najaf province. The analyzing of the study done by using (Smart PLS) program to calculate (R2, t, p). Many results concluded and one of them, there is significant impact correlation of the leadership integrity on organizational conflict. There are many suggestions have been reached depending on the results reached and one of them is the necessity of de
... Show MoreThe aim of the present study is to identify the level of prosoical behavior of Baghdad University's students and to recognize the differences between male and female students. Moreover, it also aims to identify the level of openness to experience for these students. A random sample of (123) students has been selected; 77 males and 46 females. Two scales have been used in the study. The Prosocialness scale for adults by Caprara. Et al (2005) has been translated into the Arabic language and relies on four types of actions (Helping, Sharing, Taking care, and feeling Empathetic with others) and the other scale is the Openness to Experience Scale, which is one of the Big Five Inventory by John and Srivastava (1999). The main results showed a
... Show MoreAbstract
Agricultural Bank is an important source of funding Specialist His role in lending to farmers, it imposes a great job in providing the necessary head for any developmental process in the agricultural sector money. The ACB of ancient Iraqi banks, and that because of its importance to the advancement of the national economy and contribute to the development and regulation of the economic sector through the support and the assignment of the Iraqi agricultural sector in various agricultural activities because it is responsible
for the process of granting agricultural loans to farmers bank.
The aim of the internal control in the agricultural banks to
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreThe study of sex Structure and age characteristics of an important element of the
follow-up changes between different population groups, which are connected to a large degree
the demographic, social and economic characteristics, particularly since each population
group varying characteristics in terms of age, sex entail social, demographic, cultural and
economic implications, and from that the researcher has taken from Structure of sex and age
for population in the district of Tuz Khurmatu for (1997-2012 ) the subject of consideration
and maintain compared to see the contrast between them. Qualitative Research for installation
and the age of the urban and rural areas has touched the judiciary, as well as its respects
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
This search includes the preparation of Schiff base ligand (SB) from condensation primary amine with vanillin. The new ligand was diagnosed by spectroscopic methods as Mass, NMR, CHN and FTIR. Ligand complexes were mixed from new (SB) and Anthranillic acid (A) with five metal (II) chlorides. The preparation and diagnosis were conducted by FTIR, CHN, UV-visible, molar conductivity, atomic absorption and magnetic moment. The octahedral geometrical shape of the complexes was proposed. The ligands and their new complexes were screened with two different types of bacteria.
In a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.